化工进展 ›› 2021, Vol. 40 ›› Issue (S2): 64-74.DOI: 10.16085/j.issn.1000-6613.2021-0494
收稿日期:
2021-03-11
修回日期:
2021-04-02
出版日期:
2021-11-12
发布日期:
2021-11-12
通讯作者:
梁宇翔
作者简介:
温鹏(1996—),男,硕士研究生,研究方向为润滑油添加剂的开发和生物质能源与化学转化。E-mail:基金资助:
WEN Peng(), LIANG Yuxiang(), HE Jingjian, ZHAO Mengya
Received:
2021-03-11
Revised:
2021-04-02
Online:
2021-11-12
Published:
2021-11-12
Contact:
LIANG Yuxiang
摘要:
通过乙烯复分解反应,将生物质原料中的双键切断,获得端烯化学品,为实现生物质原料制备高附加值化学品开辟了广阔的前景。本文围绕乙烯复分解反应在生物质原料的应用,简述了该反应的机理和发展,介绍了乙烯复分解催化剂,阐述了乙烯复分解反应在油脂、腰果壳油、巴豆酸酯、苯丙氨酸等生物质原料合成中的研究进展,这些反应得到的端烯化学品可用于润滑剂、聚合物、香料、药物中间体等领域,其中在微波辅助下油脂乙烯复分解反应周转数最高可达1561500,有望工业化,同时指出乙烯复分解反应存在催化剂价格偏贵且难以回收、部分生物质原料转化率和产率偏低的问题,建议接下来的研究除了开发更加经济且高效的催化剂外,还应探索合适工业化的原料、催化体系和工艺过程。
中图分类号:
温鹏, 梁宇翔, 贺景坚, 赵梦亚. 乙烯复分解反应在生物质合成烯烃化学品中的研究进展[J]. 化工进展, 2021, 40(S2): 64-74.
WEN Peng, LIANG Yuxiang, HE Jingjian, ZHAO Mengya. Research progress of ethenolysis in synthesis of olefin chemicals from biomass[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 64-74.
1 | BIDANGE J, FISCHMEISTER C, BRUNEAU C. Ethenolysis: a green catalytic tool to cleave carbon-carbon double bonds[J]. Chemistry—A European Journal, 2016, 22(35): 12226-12244. |
2 | LOZANO F J, LOZANO R, FREIRE P, et al. New perspectives for green and sustainable chemistry and engineering: approaches from sustainable resource and energy use, management, and transformation[J]. Journal of Cleaner Production, 2018, 172: 227-232. |
3 | SPEKREIJSE J, SANDERS J P M, BITTER J H, et al. The future of ethenolysis in biobased chemistry[J]. ChemSusChem, 2017, 10(3): 470-482. |
4 | HIGMAN C S, LUMMISS J A M, FOGG D E. Olefin metathesis at the dawn of implementation in pharmaceutical and specialty-chemicals manufacturing[J]. Angewandte Chemie International Edition, 2016, 55(11): 3552-3565. |
5 | JEON J Y, HAN Y, KIM Y W, et al. Feasibility of unsaturated fatty acid feedstocks as green alternatives in bio-oil refinery[J]. Biofuels, Bioproducts and Biorefining, 2019, 13(3): 690-722. |
6 | CHATTERJEE A, HOPEN ELIASSON S H, JENSEN V R. Selective production of linear α-olefins via catalytic deoxygenation of fatty acids and derivatives[J]. Catalysis Science & Technology, 2018, 8(6): 1487-1499. |
7 | NICKEL A, PEDERSON R L. Commercial potential of olefin metathesis of renewable feedstocks[M]//GRELA K. Olefin Metathesis, New York: John Viley&Sons. Inc., 2014, 335-348. |
8 | GRUBBS R H. Olefin-metathesis catalysts for the preparation of molecules and materials(Nobel Lecture)[J]. Angewandte Chemie International Edition, 2006, 45(23): 3760-3765. |
9 | JEAN-LOUIS HÉRISSON P, CHAUVIN Y. Catalyse de transformation des oléfines par les complexes du tungstène. Ⅱ. Télomérisation des oléfines cycliques en présence d'oléfines acycliques[J]. Die Makromolekulare Chemie, 1971, 141(1): 161-176. |
10 | 王溯, 张友璐, 巴妍妍, 等. 立体选择性烯烃复分解反应的研究及应用[J]. 有机化学, 2020, 40(9): 2725-2741. |
WANG S, ZHANG Y L, BA Y Y, et al. Study and applications of stereoselective olefin metathesis reactions[J]. Chinese Journal of Organic Chemistry, 2020, 40(9): 2725-2741. | |
11 | BRADSHAW C P C, HOWMAN E J, TURNER L. Olefin dismutation: reactions of olefins on cobalt oxide-molybdenum oxide-alumina[J]. Journal of Catalysis, 1967, 7(3): 269-276. |
12 | ZUECH E A, HUGHES W B, KUBICEK D H, et al. Homogeneous catalysts for olefin disproportionations from nitrosyl molybdenum and tungsten compounds[J]. Journal of the American Chemical Society, 1970, 92(3): 528-531. |
13 | HIETALA J, ROOT A, KNUUTTILA P. The surface acidity of pure and modified aluminas in Re/Al2O3 metathesis catalysts as studied by 1H MAS NMR spectroscopy and its importance in the ethenolysis of 1,5-cyclooctadiene[J]. Journal of Catalysis, 1994, 150(1): 46-55. |
14 | SCHWAB P, FRANCE M B, ZILLER J W, et al. A series of well-defined metathesis catalysts-synthesis of [RuCl2(CHR´)(PR3)2] and its reactions[J]. Angewandte Chemie International Edition, 1995, 34(18): 2039-2041. |
15 | SCHWAB P, GRUBBS R H, ZILLER J W. Synthesis and applications of RuCl2(CHR´)(PR3)2: the influence of the alkylidene moiety on metathesis activity[J]. Journal of the American Chemical Society, 1996, 118(1): 100-110. |
16 | VOUGIOUKALAKIS G C, GRUBBS R H. Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts[J]. Chemical Reviews, 2010, 110(3): 1746-1787. |
17 | SCHOLL M, DING S, LEE C W, et al. Synthesis and activity of a new generation of ruthenium-based olefin metathesis catalysts coordinated with 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene ligands[J]. Organic Letters, 1999, 1(6): 953-956. |
18 | LOVE J A, MORGAN J P, TRNKA T M, et al. A practical and highly active ruthenium-based catalyst that effects the cross metathesis of acrylonitrile[J]. Angewandte Chemie International Edition, 2002, 41(21): 4035-4037. |
19 | CHOI T L, GRUBBS R H. Controlled living ring-opening-metathesis polymerization by a fast-initiating ruthenium catalyst[J]. Angewandte Chemie International Edition, 2003, 42(15): 1743-1746. |
20 | HARRITY J P A, LA D S, CEFALO D R, et al. Chromenes through metal-catalyzed reactions of styrenyl ethers. mechanism and utility in synthesis[J]. Journal of the American Chemical Society, 1998, 120(10): 2343-2351. |
21 | GARBER S B, KINGSBURY J S, GRAY B L, et al. Efficient and recyclable monomeric and dendritic Ru-based metathesis catalysts[J]. Journal of the American Chemical Society, 2000, 122(34): 8168-8179. |
22 | CHIKKALI S, MECKING S. Refining of plant oils to chemicals by olefin metathesis[J]. Angewandte Chemie International Edition, 2012, 51(24): 5802-5808. |
23 | MGAYA J, SHOMBE G B, MASIKANE S C, et al. Cashew nut shell: a potential bio-resource for the production of bio-sourced chemicals, materials and fuels[J]. Green Chemistry, 2019, 21(6): 1186-201. |
24 | BELGACEM M N, Monomers GANDINI A.,polymers and composites from renewable resources[M]. Amsterdam: Elsevier, 2008: 41-49. |
25 | 王海京, 杜泽学, 高国强. 植物油近/超临界醇解制备生物柴油[J]. 化工进展, 2017, 36(6): 2131-2136. |
WANG H J, DU Z X, GAO G Q. Preparation of biodiesel from vegetable oil by sub/supercritical alcoholysis[J]. Chemical Industry and Engineering Progress, 2017, 36(6): 2131-2136. | |
26 | 许伟, 葛小东, 金丽珠, 等. 蓖麻油基下游产物及蓖麻油增塑剂的研究及其应用进展[J]. 化工进展, 2015, 34(7): 1983-1988. |
XU W, GE X D, JIN L H, et al. Research and application progress of castor oil-based downstream products and its plasticizer[J]. Chemical Industry and Engineering Progress, 2015, 34(7): 1983-1988. | |
27 | 孔凡志, 蒋景阳, 金子林. 油脂的氢甲酰化及其工业开发前景[J]. 化工进展, 2001, 20(12): 39-42. |
KONG F Z, JIANG J Y, JIN Z L. Review on hydroformylation of unsaturated fat chemicals and its industrial application[J]. Chemical Industry and Engineering Progress, 2001, 20(12): 39-42. | |
28 | WARWEL S, BRÜSE F, DEMES C, et al. Polymers and surfactants on the basis of renewable resources[J]. Chemosphere, 2001, 43(1): 39-48. |
29 | YELCHURI V, SRIKANTH K, PRASAD R B N, et al. Olefin metathesis of fatty acids and vegetable oils[J]. Journal of Chemical Sciences, 2019, 131(5): 38-54. |
30 | WANG M, CHEN M, FANG Y, et al. Highly efficient conversion of plant oil to bio-aviation fuel and valuable chemicals by combination of enzymatic transesterification, olefin cross-metathesis, and hydrotreating[J]. Biotechnology for Biofuels, 2018, 11(1): 1-9. |
31 | ALLEN D R, MARCOS A, MARY B, et al. Unsaturated fatty alcohol alkoxylates from natural oil metathesis: WO2013162737A1[P]. 2013-04-24. |
32 | BURDETT K A, HARRIS L D, MARGL P, et al. Renewable monomer feedstocks via olefin metathesis: fundamental mechanistic studies of methyl oleate ethenolysis with the first-generation grubbs catalyst[J]. Organometallics, 2004, 23(9): 2027-2047. |
33 | MARX V M, SULLIVAN A H, MELAIMI M, et al. Cyclic alkyl amino carbene (CAAC) ruthenium complexes as remarkably active catalysts for ethenolysis[J]. Angewandte Chemie International Edition, 2015, 54(6): 1919-1923. |
34 | GAWIN R, KOZAKIEWICZ A, GUŃKA P A, et al. Bis(cyclic alkyl amino carbene) ruthenium complexes: a versatile, highly efficient tool for olefin metathesis[J]. Angewandte Chemie International Edition, 2017, 56(4): 981-986. |
35 | BYUN S, PARK S, CHOI Y, et al. Highly efficient ethenolysis and propenolysis of methyl oleate catalyzed by abnormal N-heterocyclic carbene ruthenium complexes in combination with a phosphine-copper cocatalyst[J]. ACS Catalysis, 2020, 10(18): 10592-10601. |
36 | ULLAH A, ARSHAD M. Remarkably efficient microwave-assisted cross-metathesis of lipids under solvent-free conditions[J]. ChemSusChem, 2017, 10(10): 2167-2174. |
37 | PRADHAN R A, ARSHAD M, ULLAH A. Solvent-free rapid ethenolysis of fatty esters from spent hen and other lipidic feedstock with high turnover numbers[J]. Journal of Industrial and Engineering Chemistry, 2020, 84: 42-45. |
38 | BEHR A, KREMA S, KÄMPER A. Ethenolysis of ricinoleic acid methyl ester—An efficient way to the oleochemical key substance methyl dec-9-enoate[J]. RSC Advances, 2012, 2(33): 12775-12781. |
39 | ZIMMERER J, PINGEN D, HESS S K, et al. Integrated extraction and catalytic upgrading of microalgae lipids in supercritical carbon dioxide[J]. Green Chemistry, 2019, 21(9): 2428-2435. |
40 | SCHOTTEN C, PLAZA D, MANZINI S, et al. Continuous flow metathesis for direct valorization of food waste: an example of cocoa butter triglyceride[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(7): 1453-1459. |
41 | MUBOFU E B, MGAYA J E. Chemical valorization of cashew nut shell waste[M]. Tanzania: Springer International Publishing, 2018: 57-71. |
42 | ANILKUMAR P. Cashew nut shell liquid[M]. Vancouver: Springer, 2017: 1-19. |
43 | SHI Y, KAMER P C J, et al. Synthesis of pharmaceutical drugs from cardanol derived from cashew nut shell liquid[J]. Green Chemistry, 2019, 21(5): 1043-53. |
44 | BAADER S, PODSIADLY P E, COLE-HAMILTON D J, et al. Synthesis of tsetse fly attractants from a cashew nut shell extract by isomerising metathesis[J]. Green Chemistry, 2014, 16(12): 4885-4890. |
45 | JULIS J, BARTLETT S A, BAADER S, et al. Selective ethenolysis and oestrogenicity of compounds from cashew nut shell liquid[J]. Green Chemistry, 2014, 16(5): 2846-2856. |
46 | SHINDE T, VARGA V, POLÁŠEK M, et al. Metathesis of cardanol over Ru catalysts supported on mesoporous molecular sieve SBA-15[J]. Applied Catalysis A: General, 2014, 478: 138-145. |
47 | SCHWEITZER D, MULLEN C A, BOATENG A A, et al. Biobased n-butanol prepared from poly-3-hydroxybutyrate: optimization of the reduction of n-butyl crotonate to n-butanol[J]. Organic Process Research & Development, 2015, 19(7): 710-714. |
48 | SOMLEVA M N, PEOPLES O P, SNELL K D. PHA Bioplastics, biochemicals, and energy from crops[J]. Plant Biotechnology Journal, 2013, 11(2): 233-252. |
49 | DELLOMONACO C, CLOMBURG J M, MILLER E N, et al. Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals[J]. Nature, 2011, 476(7360): 355-359. |
50 | LIU X, YU H, JIANG X, et al. Biosynthesis of butenoic acid through fatty acid biosynthesis pathway in Escherichia coli[J]. Applied Microbiology and Biotechnology, 2015, 99(4): 1795-1804. |
51 | 王磊. 代谢工程改造解脂耶氏酵母产巴豆酸[D].武汉: 湖北工业大学, 2019. |
WANG L. Metabolic engineering of oleaginous yeast Yarrowia lipolytica to biosynthesis of crotonic acid from glucose[D]. Wuhan: Hubei University of Technology, 2019. | |
52 | SCHWEITZER D, SNELL K D. Acrylates via metathesis of crotonates[J]. Organic Process Research & Development, 2015, 19(7): 715-720. |
53 | SPEKREIJSE J, LE NȎTRE J, HAVEREN J VAN, et al. Simultaneous production of biobased styrene and acrylates using ethenolysis[J]. Green Chemistry, 2012, 14(10): 2747-2751. |
54 | GÜNTER B R. Flavours and fragrances: chemistry, bioprocessing and sustainability[M]. Berlin: Springer, 2007: 81. |
55 | BILEL H, HAMDI N, ZAGROUBA F, et al. Eugenol as a renewable feedstock for the production of polyfunctional alkenes via olefin cross-metathesis[J]. RSC Advances, 2012, 2(25): 9584-9589. |
56 | BAADER S, OHLMANN D M, GOOßEN L J. Isomerizing ethenolysis as an efficient strategy for styrene synthesis[J]. Chemistry—A European Journal, 2013, 19(30): 9807-9810. |
57 | JERMACZ I, MAJ J, MORZYCKI J W, et al. GC-MS analysis of β-carotene ethenolysis products and their synthesis as potentially active vitamin a analogues[J]. Toxicology Mechanisms and Methods, 2008, 18(6): 469-471. |
58 | LANGE J P, PRICE R, AYOUB P M, et al. Valeric biofuels: a platform of cellulosic transportation fuels[J]. Angewandte Chemie International Edition, 2010, 49(26): 4479-4483. |
59 | ARIS R D, JOZEF P R F M, DONATO S. Process for the isolation of levulinic acid: WO2017009221A1[P]. 2016-07-08. |
60 | BOND J Q, MARTIN ALONSO D, WEST R M, et al. γ-Valerolactone ring-opening and decarboxylation over SiO2/Al2O3 in the presence of water[J]. Langmuir, 2010, 26(21): 16291-16298. |
61 | NOBBS J D, ZAINAL N Z B, TAN J, et al. Bio-based pentenoic acids as intermediates to higher value-added mono- and dicarboxylic acids[J]. Chemistry Select, 2016, 1(3): 539-544. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 赵巍, 赵德银, 李世瀚, 刘洪达, 孙进, 郭艳秋. 三嗪型天然气管道缓蚀型减阻剂合成与应用[J]. 化工进展, 2023, 42(S1): 391-399. |
[6] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[7] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[8] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[9] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[10] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[11] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[12] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[13] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[14] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[15] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |