化工进展 ›› 2021, Vol. 40 ›› Issue (S1): 291-300.DOI: 10.16085/j.issn.1000-6613.2021-0239
胡慧敏1,2(), 方小峰1,2, 娄蒙蒙1,2, 刘帅1,2, 徐晨烨1,2, 李方1,2()
收稿日期:
2021-01-31
修回日期:
2021-03-04
出版日期:
2021-10-25
发布日期:
2021-11-09
通讯作者:
李方
作者简介:
胡慧敏(1996—),女,硕士研究生,研究方向为膜分离与废水处理。E-mail:基金资助:
HU Huimin1,2(), FANG Xiaofeng1,2, LOU Mengmeng1,2, LIU Shuai1,2, XU Chenye1,2, LI Fang1,2()
Received:
2021-01-31
Revised:
2021-03-04
Online:
2021-10-25
Published:
2021-11-09
Contact:
LI Fang
摘要:
氧化石墨烯(GO)作为理想的膜构筑材料,因其蜂窝状的结构特点及表面分布大量含氧基团的特性,被广泛用于水处理分离膜的构筑。GO膜具有良好的物理特性、优异的化学稳定性和独特的二维层状结构,在污水处理、脱盐和离子筛分等水处理领域备受关注。在水处理中,GO膜对有机物和离子有较好的截留效果,但也存在水通量低、稳定性差等问题。本文分析了近年来GO膜在水处理领域的研究新进展;简单总结了GO膜的制备方法和水处理应用;重点阐述了GO水处理膜分离性能优化的方法和传质机理的研究进展;最后总结并展望了GO膜在结构调控和性能提升方面的发展方向。本文为设计和制备高性能GO水处理膜提供参考。
中图分类号:
胡慧敏, 方小峰, 娄蒙蒙, 刘帅, 徐晨烨, 李方. 氧化石墨烯分离膜的性能调控及其传质机理研究进展[J]. 化工进展, 2021, 40(S1): 291-300.
HU Huimin, FANG Xiaofeng, LOU Mengmeng, LIU Shuai, XU Chenye, LI Fang. Research process on performance regulation and mass transfer mechanism of graphene oxide separation membrane[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 291-300.
插层材料 | 截留物 | 插层后水通量/L·m-2·h-1·bar-1 | 压力/MPa | 插层后水通量/L·m-2·h-1·bar-1 | 插层前截留率/% | 插层前截留率/% | 参考文献 |
---|---|---|---|---|---|---|---|
PAMAM | NaCl | 0.1 | — | 30 | <60 | >99.99 | [ |
CNT | MO | 0.5~0.9 | 3.82 | 8.69 | 98.5 | 96.1 | [ |
SiO2 | MB | 0.3 | 1.46 | 1.67 | 78 | 79 | [ |
SiO2 | MB | 0.09 | 7.4 | 31.8 | 99.7 | 99.3 | [ |
SiO2/MXene | RhB | 0.1 | — | 74.8 | — | 99.3 | [ |
TiO2/Ag+ | MgSO4 | 0.7 | 20 | 52 | 80 | 83 | [ |
Ag+ | RhB | — | — | 21.8 | — | 99.5 | [ |
ZnO | BSA | 0.1 | 120 | 170.13 | 91 | 92 | [ |
PGS | C6H34 | 0.05 | 100 | 1867 | — | 99.9 | [ |
K+ | Mg2+ | 0.1 | — | — | — | 98.84 | [ |
Ca2+ | Mg2+ | 0.1 | — | 12.26 | — | 96.26 | [ |
表1 不同间隔剂处理GO膜前后的分离性能
插层材料 | 截留物 | 插层后水通量/L·m-2·h-1·bar-1 | 压力/MPa | 插层后水通量/L·m-2·h-1·bar-1 | 插层前截留率/% | 插层前截留率/% | 参考文献 |
---|---|---|---|---|---|---|---|
PAMAM | NaCl | 0.1 | — | 30 | <60 | >99.99 | [ |
CNT | MO | 0.5~0.9 | 3.82 | 8.69 | 98.5 | 96.1 | [ |
SiO2 | MB | 0.3 | 1.46 | 1.67 | 78 | 79 | [ |
SiO2 | MB | 0.09 | 7.4 | 31.8 | 99.7 | 99.3 | [ |
SiO2/MXene | RhB | 0.1 | — | 74.8 | — | 99.3 | [ |
TiO2/Ag+ | MgSO4 | 0.7 | 20 | 52 | 80 | 83 | [ |
Ag+ | RhB | — | — | 21.8 | — | 99.5 | [ |
ZnO | BSA | 0.1 | 120 | 170.13 | 91 | 92 | [ |
PGS | C6H34 | 0.05 | 100 | 1867 | — | 99.9 | [ |
K+ | Mg2+ | 0.1 | — | — | — | 98.84 | [ |
Ca2+ | Mg2+ | 0.1 | — | 12.26 | — | 96.26 | [ |
杂化材料 | 截留物 | 压力 /bar | 纯水通量 /L·m-2·h-1·bar-1 | 截留率/% | 参考 文献 |
---|---|---|---|---|---|
HKUST-1 | BSA | 1.5 | 122.34 | >90 | [ |
HKUST-1 | NaCl | 1 | 115200 | 100 | [ |
COFs-TpAD | RB | 1 | 596 | 98 | [ |
COFs-CTF5 | NaCl | 1 | 226.3 | 95.49 | [ |
COFs-TpPa | MB | 1 | 166.8 | 97.05 | [ |
MoS2 | MB | 1 | 159.6 | 96.3 | [ |
MWCNT | BSA | 1 | 125.6 | 85.01 | [ |
BN | MB | 20.68 | 4.15 | >99.5 | [ |
MXene | NR | 1 | 71.9 | >99.5 | [ |
MXene-Ti3C2Tx | NaCl | 4.89 | 0.05 | 98.6 | [ |
表2 GO杂化膜的分离性能
杂化材料 | 截留物 | 压力 /bar | 纯水通量 /L·m-2·h-1·bar-1 | 截留率/% | 参考 文献 |
---|---|---|---|---|---|
HKUST-1 | BSA | 1.5 | 122.34 | >90 | [ |
HKUST-1 | NaCl | 1 | 115200 | 100 | [ |
COFs-TpAD | RB | 1 | 596 | 98 | [ |
COFs-CTF5 | NaCl | 1 | 226.3 | 95.49 | [ |
COFs-TpPa | MB | 1 | 166.8 | 97.05 | [ |
MoS2 | MB | 1 | 159.6 | 96.3 | [ |
MWCNT | BSA | 1 | 125.6 | 85.01 | [ |
BN | MB | 20.68 | 4.15 | >99.5 | [ |
MXene | NR | 1 | 71.9 | >99.5 | [ |
MXene-Ti3C2Tx | NaCl | 4.89 | 0.05 | 98.6 | [ |
1 | ZHANG Y, WU B, XU H, et al. Nanomaterials-enabled water and wastewater treatment[J]. NanoImpact, 2016, 3/4: 22-39. |
2 | BONE S E, STEINRUECK H G, TONEY M F. Advanced characterization in clean water technologies[J]. Joule, 2020, 4(8): 1637-1659. |
3 | WANG L, WANG Y, WU L, et al. Fabrication, properties, performances, and separation application of polymeric pervaporation membranes: a review[J]. Polymers (Basel), 2020, 12(7): 1466. |
4 | SAYED E T, SHEHATA N, ABDELKAREEM M A, et al. Recent progress in environmentally friendly bio-electrochemical devices for simultaneous water desalination and wastewater treatment[J]. Science of the Total Environment, 2020, 748: 141046. |
5 | WANG E N, KARNIK R. Water desalination: graphene cleans up water [J]. Nat Nanotechnol, 2012, 7(9): 552-554. |
6 | ANG E Y M, NG T Y, YEO J, et al. Investigations on different two-dimensional materials as slit membranes for enhanced desalination[J]. Journal of Membrane Science, 2020, 598: 117653. |
7 | LI H, XUE S, SHANG Y, et al. Research and application progress based on the interfacial properties of graphene oxide[J]. Advanced Materials Interfaces, 2020, 7(21): 2000881. |
8 | TSOU C H, AN Q F, LO S C, et al. Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration[J]. Journal of Membrane Science, 2015, 477: 93-100. |
9 | SU P, WANG F, LI Z, et al. Graphene oxide membranes: controlling their transport pathways[J]. Journal of Materials Chemistry A, 2020, 8(31): 15319-15340. |
10 | ABDELKADER B A, ANTAR M A, LAOUI T, et al. Development of graphene oxide-based membrane as a pretreatment for thermal seawater desalination[J]. Desalination, 2019, 465: 13-24. |
11 | KIM J H, CHOI Y, KANG J, et al. Scalable fabrication of deoxygenated graphene oxide nanofiltration membrane by continuous slot-die coating[J]. Journal of Membrane Science, 2020, 612: 118454. |
12 | KANG H, WANG W, SHI J, et al. Interlamination restrictive effect of carbon nanotubes for graphene oxide forward osmosis membrane via layer by layer assembly[J]. Applied Surface Science, 2019, 465: 1103-1106. |
13 | DENG J, YOU Y, BUSTAMANTE H, et al. Mechanism of water transport in graphene oxide laminates[J]. Chemical Science, 2017, 8(3): 1701-1704. |
14 | KANG Y, QIU R, JIAN M, et al. The role of nanowrinkles in mass transport across graphene-based membranes[J]. Advanced Functional Materials, 2020, 30(32): 2003159. |
15 | WANG C B, FENG Y Y, CHEN J X, et al. Nanofiltration membrane based on graphene oxide crosslinked with zwitterion-functionalized polydopamine for improved performances[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 110: 153-162. |
16 | HALAKOO E, FENG X. Layer-by-layer assembled membranes from graphene oxide and polyethyleneimine for ethanol and isopropanol dehydration[J]. Chemical Engineering Science, 2020, 216: 115488. |
17 | KANDJOU V, PEREZ-MAS A M, ACEVEDO B, et al. Enhanced covalent p-phenylenediamine crosslinked graphene oxide membranes: towards superior contaminant removal from wastewaters and improved membrane reusability[J]. Journal of Hazardous Materials, 2019, 380: 120840. |
18 | LOU Y, TAN F J, ZENG R, et al. Preparation of cross-linked graphene oxide on polyethersulfone membrane for pharmaceuticals and personal care products removal[J]. Polymers (Basel), 2020, 12(9): 1921. |
19 | XI Y H, LIU Z, LIAO Q C, et al. Effect of oxidized-group-supported lamellar distance on stability of graphene-based membranes in aqueous solutions[J]. Industrial & Engineering Chemistry Research, 2018, 57(29): 9439-9447. |
20 | QIAN Y, ZHOU C, HUANG A. Cross-linking modification with diamine monomers to enhance desalination performance of graphene oxide membranes[J]. Carbon, 2018, 136: 28-37. |
21 | THEBO K H, QIAN X, ZHANG Q, et al. Highly stable graphene-oxide-based membranes with superior permeability[J]. Nature Communications, 2018, 9: 1486. |
22 | YANG J, GONG D, LI G, et al. Self-assembly of thiourea-crosslinked graphene oxide framework membranes toward separation of small molecules[J]. Advanced Materials, 2018, 30(16): 1705775. |
23 | RAJESH S, BOSE A B. Development of graphene oxide framework membranes via the “from” and “to” cross-Linking approach for ion-selective separations[J]. American Chemical Society Applied Materials & Interfaces, 2019, 11(31): 27706-27716. |
24 | SONG Y, LI R, PAN F, et al. Ultrapermeable graphene oxide membranes with tunable interlayer distances via vein-like supramolecular dendrimers[J]. Journal of Materials Chemistry A, 2019, 7(31): 18642-18652. |
25 | CHUAH C Y, NIE L, LEE J M, et al. The influence of cations intercalated in graphene oxide membranes in tuning H2/CO2 separation performance[J]. Separation and Purification Technology, 2020, 246: 116933. |
26 | ZHANG P, GONG J L, ZENG G M, et al. Cross-linking to prepare composite graphene oxide-framework membranes with high-flux for dyes and heavy metal ions removal[J]. Chemical Engineering Journal, 2017, 322: 657-666. |
27 | HAO W, TONG Z, LIU X, et al. Optimizing nanostrands-inserted graphene oxide membrane with polyelectrolyte protective layer for enhanced ethanol pervaporation dehydration[J]. Separation and Purification Technology, 2020, 251: 117322. |
28 | BANG K R, BAHAMON D, VEGA L F, et al. Design of sub-nanochannels between graphene oxide sheets via crown ether intercalation to selectively regulate cation permeation[J]. Advanced Materials Interfaces, 2020, 7(8): 1901876. |
29 | GOGOI A, ANKI REDDY K, MONDAL P K. Influence of the presence of cations on the water and salt dynamics inside layered graphene oxide (GO) membranes[J]. Nanoscale, 2020, 12(13): 7273-7283. |
30 | ZHANG Q, CHEN S, FAN X, et al. A multifunctional graphene-based nanofiltration membrane under photo-assistance for enhanced water treatment based on layer-by-layer sieving[J]. Applied Catalysis B: Environmental, 2018, 224:204-213. |
31 | GOH K, JIANG W C, KARAHAN H E, et al. All-carbon nanoarchitectures as high-performance separation membranes with superior stability[J]. Advanced Functional Materials, 2015, 25(47): 7348-7359. |
32 | LIU T, TIAN L, GRAHAM N, et al. Regulating the interlayer spacing of graphene oxide membranes and enhancing their stability by use of PACl[J]. Environ Science & Technology, 2019, 53(20): 11949-11959. |
33 | HAN Y, JIANG Y, GAO C. High-flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes[J]. American Chemical Society Applied Material & Interfaces, 2015, 7(15): 8147-8155. |
34 | YAN X, HUO L, MA C, et al. Layer-by-layer assembly of graphene oxide-TiO2 membranes for enhanced photocatalytic and self-cleaning performance[J]. Process Safety and Environmental Protection, 2019, 130: 257-264. |
35 | LIU Y, YU Z, PENG Y, et al. A novel photocatalytic self-cleaning TiO2 nanorods inserted graphene oxide-based nanofiltration membrane[J]. Chemical Physics Letters, 2020, 749: 137422. |
36 | HAN R, WU P. High-performance graphene oxide nanofiltration membrane with continuous nanochannels prepared by the in situ oxidation of MXene[J]. Journal of Materials Chemistry A, 2019, 7(11): 6475-6481. |
37 | ABADIKHAH H, NADERI KALALI E, KHODI S, et al. Multifunctional thin-film nanofiltration membrane incorporated with reduced graphene oxide@TiO2@Ag nanocomposites for high desalination performance, dye retention, and antibacterial properties[J]. American Chemical Society Applied Material & Interfaces, 2019, 11(26): 23535-23545. |
38 | LIU G F, HUANG L J, WANG Y X, et al. Preparation of a graphene/silver hybrid membrane as a new nanofiltration membrane[J]. RSC Advance, 2017, 7(77): 49159-49165. |
39 | AYYARU S, DINH T T L, AHN Y H. Enhanced antifouling performance of PVDF ultrafiltration membrane by blending zinc oxide with support of graphene oxide nanoparticle[J]. Chemosphere, 2020, 241: 125068. |
40 | ZHAO X, SU Y, LIU Y, et al. Free-standing graphene oxide-palygorskite nanohybrid membrane for oil/water separation[J]. American Chemical Society Applied Material & Interfaces, 2016, 8(12): 8247-8256. |
41 | GHAFFAR A, ZHANG L, ZHU X, et al. Scalable graphene oxide membranes with tunable water channels and stability for ion rejection[J]. Environmental Science—Nano, 2019, 6(3): 904-915. |
42 | KIM J, LEE S E, SEO S, et al. Near-complete blocking of multivalent anions in graphene oxide membranes with tunable interlayer spacing from 3.7 to 8.0 angstrom[J]. Journal of Membrane Science, 2019, 592: 117394. |
43 | MOUSAVI S M, LOW F W, HASHEMI S A, et al. Development of hydrophobic reduced graphene oxide as a new efficient approach for photochemotherapy[J]. RSC Advances, 2020, 10(22): 12851-12863. |
44 | FAN X, CAI C, GAO J, et al. Hydrothermal reduced graphene oxide membranes for dyes removing[J]. Separation and Purification Technology, 2020, 241: 116730. |
45 | LI Y, YUAN S, XIA Y, et al. Mild annealing reduced graphene oxide membrane for nanofiltration[J]. Journal of Membrane Science, 2020, 601: 117900. |
46 | 郭建强, 李炯利, 梁佳丰, 等. 氧化石墨烯的化学还原方法与机理研究进展[J]. 材料工程, 2020, 48(7): 24-35. |
GUO Jianqiang, LI Jiongli, LIANG Jiafeng, et al. Research progress in methods and mechanisms of chemical reduction graphene oxide[J]. Journal of Materials Engineering, 2020, 48(7): 24-35. | |
47 | CHEN X, FENG Z, GOHIL J, et al. Reduced holey graphene oxide membranes for desalination with improved water permeance[J]. American Chemical Society Applied Material & Interfaces, 2020, 12(1): 1387-1394. |
48 | WANG Z, MA C, SINQUEFIELD S A, et al. High-performance graphene oxide nanofiltration membranes for black liquor concentration[J]. American Chemical Society Sustainable Chemistry & Engineering, 2019, 7(17): 14915-14923. |
49 | GUPTA P, RAJKUMAR S, GOPINATH P. Development of sunlight-driven reduced graphene oxide (rGO)/CeO₂-CuO nanofibrous photocatalyst for efficient removal of organic dyes[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(12): 7480-7494. |
50 | LI Z, XING Y, FAN X, et al. rGO/protonated g-C3N4 hybrid membranes fabricated by photocatalytic reduction for the enhanced water desalination[J]. Desalination, 2018, 443: 130-136. |
51 | ZHU Y W, MURALI S, STOLLER M D, et al. Carbon-based supercapacitors produced by activation of graphene[J]. Science, 2011, 332(6037): 1537-1541. |
52 | BUELKE C, ALSHAMI A, CASLER J, et al. Evaluating graphene oxide and holey graphene oxide membrane performance for water purification[J]. Journal of Membrane Science, 2019, 588: 117195. |
53 | LI Y, ZHAO W, WEYLAND M, et al. Thermally reduced nanoporous graphene oxide membrane for desalination[J]. Environmental Science & Technology, 2019, 53(14): 8314-8323. |
54 | LACEY S D, KIRSCH D J, LI Y, et al. Extrusion-based 3D printing of hierarchically porous advanced battery electrodes[J]. Advanced Materials, 2018, 30(12): 1705651. |
55 | KANG J, CHOI Y, KIM J H, et al. Functionalized nanoporous graphene membrane with ultrafast and stable nanofiltration [J]. Journal of Membrane Science, 2021, 618: 118635. |
56 | LIU G, JIN W, XU N. Two-dimensional-material membranes: a new family of high-performance separation membranes[J]. Angewandte Chemie International Edition, 2016, 55(43): 13384-13397. |
57 | YANG S, ZOU Q, WANG T, et al. Effects of GO and MOF@GO on the permeation and antifouling properties of cellulose acetate ultrafiltration membrane[J]. Journal of Membrane Science, 2019, 569: 48-59. |
58 | DAHANAYAKA M, BABICHEVA R, CHEN Z, et al. Atomistic simulation study of GO/HKUST-1 MOF membranes for seawater desalination via pervaporation[J]. Applied Surface Science, 2020, 503: 144198. |
59 | YAO J, LIU C, LIU X, et al. Azobenzene-assisted exfoliation of 2D covalent organic frameworks into large-area, few-layer nanosheets for high flux and selective molecular separation membrane[J]. Journal of Membrane Science, 2020, 601: 117864. |
60 | KHAN N A, YUAN J, WU H, et al. Mixed nanosheet membranes assembled from chemically grafted graphene oxide and covalent organic frameworks for ultra-high water flux[J]. American Chemical Society Applied Material & Interfaces, 2019, 11(32): 28978-28986 |
61 | KONG G, PANG J, TANG Y, et al. Efficient dye nanofiltration of a graphene oxide membrane via combination with a covalent organic framework by hot pressing[J]. Journal of Materials Chemistry A, 2019, 7(42): 24301-24310. |
62 | SUN J, CHEN Y, HU C, et al. Modulation of cation trans-membrane transport in GO-MoS2 membranes through simultaneous control of interlayer spacing and ion-nanochannel interactions[J]. Chemosphere, 2019, 222:156-164. |
63 | KIM T I, KWON B, YOON J, et al. Antibacterial activities of graphene oxide-molybdenum disulfide nanocomposite films[J]. American Chemical Society Applied Material & Interfaces, 2017, 9(9): 7908-7917. |
64 | CHENG P, CHEN Y, GU Y H, et al. Hybrid 2D WS2/GO nanofiltration membranes for finely molecular sieving[J]. Journal of Membrane Science, 2019, 591: 117308. |
65 | LEE D K, KIM S J, KIM Y J, et al. Graphene oxide/carbon nanotube bilayer flexible membrane for high-performance Li-S batteries with superior physical and electrochemical properties[J]. Advanced Materials Interfaces, 2019, 6(7): 1801992. |
66 | QU L, ZHU G, JI J, et al. Recyclable visible light-driven O-g-C3N4/graphene oxide/N-carbon nanotube membrane for efficient removal of organic pollutants[J]. American Chemical Society Applied Material & Interfaces, 2018, 10(49): 42427-42435. |
67 | YUAN X T, XU C X, GENG H Z, et al. Multifunctional PVDF/CNT/GO mixed matrix membranes for ultrafiltration and fouling detection[J]. Journal of Hazardous Materials, 2020, 384: 120978. |
68 | LIN H, MEHRA N, LI Y, et al. Graphite oxide/boron nitride hybrid membranes: the role of cross-plane laminar bonding for a durable membrane with large water flux and high rejection rate[J]. Journal of Membrane Science, 2020, 593: 117401. |
69 | LIU T, LIU X, GRAHAM N, et al. Two-dimensional MXene incorporated graphene oxide composite membrane with enhanced water purification[J]. Journal of Membrane Science, 2020, 593(7): 117431. |
70 | GAO H, CHEN W, XU C, et al. Two-dimensional Ti3C2Tx MXene/GO hybrid membranes for highly efficient osmotic power generation[J]. Environmental Science & Technology, 2020, 54(5): 2931-2940. |
71 | LU Z, WEI Y, DENG J, et al. Self-crosslinked MXene (Ti3C2Tx) membranes with good antiswelling property for monovalent metal ion exclusion[J]. American Chemical Society Nano, 2020, 13: 10535-10544. |
72 | NICOLAI A, SUMPTER B G, MEUNIER V. Tunable water desalination across graphene oxide framework membranes[J]. Physical Chemistry Chemical Physics, 2014, 16(18): 8646-8654. |
73 | 余炎子. 石墨烯埃米通道离子输运的力学机理研究[D]. 合肥: 中国科学技术大学, 2019. |
YU Y Z. Mechanical mechanism of ion transport through angstrom-scale graphene channels[D]. Hefei: University of Science and Technology of China, 2019. | |
74 | BOUKHVALOV D W, KATSNELSON M I, SON Y W. Origin of anomalous water permeation through graphene oxide membrane[J]. Nano Letters, 2013, 13(8): 3930-3935. |
75 | LEE H G, JIN D, SHIM W, et al. Synergistic effects of crystal structure and surface chemistry of stacked graphene-oxide membranes on the water-permeation mechanism[J]. Desalination, 2020, 492: 114603. |
76 | NIE L, GOH K, WANG Y, et al. Realizing small-flake graphene oxide membranes for ultrafast size-dependent organic solvent nanofiltration[J]. Science Advances, 2020, 6(17): 9184. |
77 | ESFANDIAR A, RADHA B, WANG F C, et al. Size effect In Ion transport through angstrom-scale silts[J]. Science, 2017, 358(6362): 511-513. |
78 | CORRY B. Mechanisms of selective ion transport and salt rejection in carbon nanostructures[J]. MRS Bulletin, 2017, 42(4): 306-310. |
79 | PHAM V H, CUONG T V, HUR S H, et al. Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating[J]. Carbon, 2010, 48(7): 1945-1951. |
80 | ABRAHAM J, VASU K S, WILLIAMS C D, et al. Tunable sieving of ions using graphene oxide membranes[J]. Nature Nanotechnology, 2017, 12(6): 546-550. |
81 | CHEN C, JIA L, LI J, et al. Understanding the effect of hydroxyl/epoxy group on water desalination through lamellar graphene oxide membranes via molecular dynamics simulation[J]. Desalination, 2020, 491: 114560. |
82 | 汪国睿. 石墨烯界面力学行为的表征与调控研究[D].合肥: 中国科学技术大学, 2017. |
WANG G R. Study on characterization and modification of graphene-based interfacial mechanical behavior[D]. Hefei: University of Science and Technology of China, 2017. |
[1] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[2] | 王莹, 韩云平, 李琳, 李衍博, 李慧丽, 颜昌仁, 李彩侠. 城市污水厂病毒气溶胶逸散特征研究现状与未来展望[J]. 化工进展, 2023, 42(S1): 439-446. |
[3] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[4] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[5] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
[6] | 张瑞杰, 刘志林, 王俊文, 张玮, 韩德求, 李婷, 邹雄. 水冷式复叠制冷系统的在线动态模拟与优化[J]. 化工进展, 2023, 42(S1): 124-132. |
[7] | 盛维武, 程永攀, 陈强, 李小婷, 魏嘉, 李琳鸽, 陈险峰. 微气泡和微液滴双强化脱硫反应器操作分析[J]. 化工进展, 2023, 42(S1): 142-147. |
[8] | 黄益平, 李婷, 郑龙云, 戚傲, 陈政霖, 史天昊, 张新宇, 郭凯, 胡猛, 倪泽雨, 刘辉, 夏苗, 主凯, 刘春江. 三级环流反应器中气液流动与传质规律[J]. 化工进展, 2023, 42(S1): 175-188. |
[9] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[10] | 王福安. 300kt/a环氧丙烷工艺反应器降耗减排分析[J]. 化工进展, 2023, 42(S1): 213-218. |
[11] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[12] | 李春利, 韩晓光, 刘加朋, 王亚涛, 王晨希, 王洪海, 彭胜. 填料塔液体分布器的研究进展[J]. 化工进展, 2023, 42(9): 4479-4495. |
[13] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[14] | 王晨, 白浩良, 康雪. 大功率UV-LED散热与纳米TiO2光催化酸性红26耦合系统性能[J]. 化工进展, 2023, 42(9): 4905-4916. |
[15] | 李洞, 王倩倩, 张亮, 李俊, 付乾, 朱恂, 廖强. 非水系纳米流体热再生液流电池串联堆性能特性[J]. 化工进展, 2023, 42(8): 4238-4246. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |