化工进展 ›› 2021, Vol. 40 ›› Issue (S1): 281-290.DOI: 10.16085/j.issn.1000-6613.2020-2000
收稿日期:
2020-09-30
修回日期:
2021-01-12
出版日期:
2021-10-25
发布日期:
2021-11-09
通讯作者:
李海滨
作者简介:
邢以晶(1991—),女,博士研究生,研究方向为质子交换膜燃料电池。E-mail:基金资助:
XING Yijing1(), LIU Fang2, ZHANG Yalin2, LI Haibin1()
Received:
2020-09-30
Revised:
2021-01-12
Online:
2021-10-25
Published:
2021-11-09
Contact:
LI Haibin
摘要:
燃料电池技术作为一种绿色能源技术,在减少能源消耗、环境污染等方面具有巨大潜力。膜电极(MEA)是质子交换膜燃料电池(PEMFC)的核心部件,MEA中电化学反应的顺利进行需要各功能层的协调配合,MEA各功能层涉及的传质、导电、导质子、催化等方面均影响燃料电池的性能。根据制备方法,可以将MEA分为催化剂涂敷基底(CCS)型MEA、催化剂涂敷膜(CCM)型MEA、有序化MEA和一体化MEA。MEA的性能不仅由催化剂本身载量决定,也受其结构设计和制备工艺的影响。本文介绍了MEA制备过程中常见的改进方法,分别从催化剂喷涂、刮涂、模槽挤出涂覆方式,催化剂浆料组成中Nafion含量和溶剂极性选择,催化层梯度化、图案化及界面结构改进,PEM结构增强、图案化、成膜方式等方面的研究进展进行讨论。但是目前对于MEA各功能层界面间的研究较少,应该注意的是催化层/质子交换膜(PEM)界面以及催化层/气体扩散层(GDL)界面设计也将直接影响MEA的性能。
中图分类号:
邢以晶, 刘芳, 张雅琳, 李海滨. 质子交换膜燃料电池膜电极制备方法的研究进展[J]. 化工进展, 2021, 40(S1): 281-290.
XING Yijing, LIU Fang, ZHANG Yalin, LI Haibin. Research progress on preparation methods of membrane electrode assemblies for proton exchange membrane fuel cells[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 281-290.
1 | DING X, DIDARI S, FULLER T F, et al. Membrane electrode assembly fabrication process for directly coating catalyzed gas diffusion layers[J]. Journal of The Electrochemical Society, 2012, 159 (6): B746-B753. |
2 | JEONG H Y, YANG D S, HAN J H, et al. Novel interfacial bonding layers with controlled gradient composition profile for hydrocarbon-based membrane electrode assemblies[J]. Journal of Power Sources, 2018, 398: 1-8. |
3 | JEONG G, KIM M, HAN J, et al. High-performance membrane-electrode assembly with an optimal polytetrafluoroethylene content for high-temperature polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2016, 323: 142-146. |
4 | GUERRERO MORENO N, CISNEROS MOLINA M, GERVASIO D, et al. Approaches to polymer electrolyte membrane fuel cells (PEMFCs) and their cost[J]. Renewable and Sustainable Energy Reviews, 2015, 52: 897-906. |
5 | BLADERGROEN B, SU H, PASUPATHI S, et al. Overview of membrane electrode assembly preparation methods for solid polymer electrolyte electrolyzer[J]. Electrolysis, 2012, 1: 46-59. |
6 | MAUGER S A, PFEILSTICKER J R, WANG M, et al. Fabrication of high-performance gas-diffusion-electrode based membrane-electrode assemblies[J]. Journal of Power Sources, 2020, 450: 227581. |
7 | LI Y, ZHOU Z, LIU X, et al. Modeling of PEM fuel cell with thin MEA under low humidity operating condition[J]. Applied Energy, 2019, 242: 1513-1527. |
8 | TANG H L, WANG S L, JIANG S P, et al. A comparative study of CCM and hot-pressed MEAs for PEM fuel cells[J]. Journal of Power Sources, 2007, 170 (1): 140-144. |
9 | DEBE M K. Tutorial on the fundamental characteristics and practical properties of nanostructured thin film (NSTF) catalysts[J]. Journal of the Electrochemical Society, 2013, 160 (6): F522-F534. |
10 | United States Driving Research and Innovation for Vehicle efficiency and Energy sustainability (U.S. DRIVE) Partnership. Fuel cell technical team roadmap[R]. United States: U.S. DRIVE Technical Teams, 2017. |
11 | KLINGELE M, BREITWIESER M, ZENGERLE R, et al. Direct deposition of proton exchange membranes enabling high performance hydrogen fuel cells[J]. Journal of Materials Chemistry A, 2015, 3 (21): 11239-11245. |
12 | VIERRATH S, BREITWIESER M, KLINGELE M, et al. The reasons for the high power density of fuel cells fabricated with directly deposited membranes[J]. Journal of Power Sources, 2016, 326: 170-175. |
13 | WEHKAMP N, BREITWIESER M, BÜCHLER A, et al. Directly deposited Nafion/TiO2 composite membranes for high power medium temperature fuel cells[J]. RSC Advances, 2016, 6(29): 24261-24266. |
14 | BREITWIESER M, MORONI R, SCHOCK J, et al. Water management in novel direct membrane deposition fuel cells under low humidification[J]. International Journal of Hydrogen Energy, 2016, 41(26): 11412-11417. |
15 | BAYER T, PHAM H, SSASAKIK, et al. Spray deposition of Nafion membranes: electrode-supported fuel cells[J]. Journal of Power Sources, 2016, 327: 319-326. |
16 | BREITWIESER M, BAYER T, BüCHLER A, et al. A fully spray-coated fuel cell membrane electrode assembly using Aquivion ionomer with a graphene oxide/cerium oxide interlayer[J]. Journal of Power Sources, 2017, 351: 145-150. |
17 | ZHAO J, SHAHGALDI S, OZDEN A, et al. Effect of catalyst deposition on electrode structure, mass transport and performance of polymer electrolyte membrane fuel cells[J]. Applied Energy, 2019, 255: 113802. |
18 | SU H, JAO T C, BARRON O, et al. Low platinum loading for high temperature proton exchange membrane fuel cell developed by ultrasonic spray coating technique[J]. Journal of Power Sources, 2014, 267: 155-159. |
19 | HUANG T H, SHEN H L, JAO T C, et al. Ultra-low Pt loading for proton exchange membrane fuel cells by catalyst coating technique with ultrasonic spray coating machine[J]. International Journal of Hydrogen Energy, 2012, 37(18): 13872-13879. |
20 | CHAPARRO A M, BENÍTEZ R, GUBLER L, et al. Study of membrane electrode assemblies for PEMFC, with cathodes prepared by the electrospray method[J]. Journal of Power Sources, 2007, 169(1): 77-84. |
21 | BENDER G, ZAWODZINSKI T A, SAAB A P. Fabrication of high precision PEFC membrane electrode assemblies[J]. Journal of Power Sources, 2003, 124(1): 114-117. |
22 | PARK I S, LI W, MANTHIRAM A. Fabrication of catalyst-coated membrane-electrode assemblies by doctor blade method and their performance in fuel cells[J]. Journal of Power Sources, 2010, 195(20): 7078-7082. |
23 | DESCHAMPS F L, MAHY J G, LÉONARD A F, et al. A practical method to characterize proton exchange membrane fuel cell catalyst layer topography: application to two coating techniques and two carbon supports[J]. Thin Solid Films, 2020, 695: 137751. |
24 | DING X, LIU J, HARRIS T A L. A review of the operating limits in slot die coating processes[J]. AIChE Journal, 2016, 62(7): 2508-2524. |
25 | STÄHLER M, STÄHLER A, SCHEEPERS F, et al. A completely slot die coated membrane electrode assembly[J]. International Journal of Hydrogen Energy, 2019, 44(14): 7053-7058. |
26 | PASSALACQUA E L F, SQUADRITO G, PATTI A, et al. Nafion content in the catalyst layer of polymer electrolyte fuel cells effects on structure and performance[J]. Electrochimica Acta, 2001, 46: 799-805. |
27 | SASIKUMAR G, IHM J W, RYU H. Optimum Nafion content in PEM fuel cell electrodes[J]. Electrochimica Acta, 2004, 50(2-3): 601-605. |
28 | TABE Y A S, HAYASHI S, SUZUKI K,et al. Analysis of cathode catalyst layer structure and oxygen transport resistance depending on fabrication condition in PEMFC[J]. ECS Transactions, 2015, 69(17): 773-781. |
29 | KIM T H, YOO J H, MAIYALAGAN T, et al. Influence of the Nafion agglomerate morphology on the water-uptake behavior and fuel cell performance in the proton exchange membrane fuel cells[J]. Applied Surface Science, 2019, 481: 777-784. |
30 | FERNÁNDEZ R, FERREIRA P, DAZA L. PEMFC electrode preparation: influence of the solvent composition and evaporation rate on the catalytic layer microstructure[J]. Journal of Power Sources, 2005, 151: 18-24. |
31 | KIM T H, YI J Y, JUNG C Y, et al. Solvent effect on the Nafion agglomerate morphology in the catalyst layer of the proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2017, 42(1): 478-485. |
32 | MITSUHARU CHISAKA H D. Effect of organic solvents on catalyst layer structure in polymer electrolyte membrane fuel cells[J]. Journal of the Electrochemical Society, 2009, 156(1): B22-B26. |
33 | YU H, ROLLER J M, MUSTAIN W E, et al. Influence of the ionomer/carbon ratio for low-Pt loading catalyst layer prepared by reactive spray deposition technology[J]. Journal of Power Sources, 2015, 283: 84-94. |
34 | BARICCI A, BONANOMI M, YU H, et al. Modelling analysis of low platinum polymer fuel cell degradation under voltage cycling: gradient catalyst layers with improved durability[J]. Journal of Power Sources, 2018, 405: 89-100. |
35 | SANCHEZ D G, RUIU T, BISWAS I, et al. Local impact of humidification on degradation in polymer electrolyte fuel cells[J]. Journal of Power Sources, 2017, 352: 42-55. |
36 | TAYLOR A D, KIM E Y, HUMES V P, et al. Inkjet printing of carbon supported platinum 3-D catalyst layers for use in fuel cells[J]. Journal of Power Sources, 2007, 171(1): 101-106. |
37 | SU H N, ZENG Q, LIAO S J, et al. High performance membrane electrode assembly with ultra-low platinum loading prepared by a novel multi catalyst layer technique[J]. International Journal of Hydrogen Energy, 2010, 35(19): 10430-10436. |
38 | TOWNE S, VISWANATHAN V, HOLBERY J, et al. Fabrication of polymer electrolyte membrane fuel cell MEAs utilizing inkjet print technology[J]. Journal of Power Sources, 2007, 171(2): 575-584. |
39 | SHUKLA S, DOMICAN K, KARAN K, et al. Analysis of low platinum loading thin polymer electrolyte fuel cell electrodes prepared by inkjet printing[J]. Electrochimica Acta, 2015, 156: 289-300. |
40 | KIM S M, AHN C Y, CHO Y H, et al. High-performance fuel cell with stretched catalyst-coated membrane: one-step formation of cracked electrode[J]. Scientific Reports, 2016, 6: 26503. |
41 | SUNG C C, LIU C Y, CHENG C C J. Performance improvement by a glue-functioned Nafion layer coating on gas diffusion electrodes in PEM fuel cells[J]. International Journal of Hydrogen Energy, 2014, 39(22): 11700-11705. |
42 | MURATA S, IMANISHI M, HASEGAWA S, et al. Vertically aligned carbon nanotube electrodes for high current density operating proton exchange membrane fuel cells[J]. Journal of Power Sources, 2014, 253: 104-113. |
43 | 潘牧,官树猛,谭金婷. 一种改进质子交换膜燃料电池性能的催化层的制备方法: CN 109860636A[P]. 2019- 06-07. |
PAN Mu, GUAN Shumeng, TAN Jinting, et al. Preparation method of catalyst layer for improving performance of proton exchange membrane fuel cell: CN109860636A[P]. 2019-06-07. | |
44 | WANG L, ADVANI S G, PRASAD A K. Membrane electrode assembly with enhanced membrane/electrode interface for proton exchange membrane fuel cells[J]. The Journal of Physical Chemistry C, 2013, 117(2): 945-948. |
45 | LEE D H, JO W, YUK S, et al. In-plane channel-structured catalyst layer for polymer electrolyte membrane fuel cells[J]. ACS Applied Materials & Interfaces, 2018, 10(5): 4682-4688. |
46 | JAO T C, JUNG G B, KUO S C, et al. Degradation mechanism study of PTFE/Nafion membrane in MEA utilizing an accelerated degradation technique[J]. International Journal of Hydrogen Energy, 2012, 37(18): 13623-13630. |
47 | PARK J, WANG L, ADVANI S G, et al. Durability analysis of nafion/hydrophilic pretreated PTFE membranes for PEMFCs[J]. Journal of the Electrochemical Society, 2012, 159(12): F864-F870. |
48 | WU B, ZHAO M, SHI W, et al. The degradation study of Nafion/PTFE composite membrane in PEM fuel cell under accelerated stress tests[J]. International Journal of Hydrogen Energy, 2014, 39(26): 14381-14390. |
49 | KOH J K, JEON Y, CHO Y I, et al. A facile preparation method of surface patterned polymer electrolyte membranes for fuel cell applications[J]. Journal of Materials Chemistry A, 2014, 2(23): 8652-8659. |
50 | CHI W S, JEON Y, PARK S J, et al. Fabrication of surface-patterned membranes by means of a ZnO nanorod templating method for polymer electrolyte membrane fuel-cell applications[J]. ChemPlusChem, 2014, 79(8): 1109-1115. |
51 | JANG S, KIM M, KANG Y S, et al. Facile multiscale patterning by creep-assisted sequential imprinting and fuel cell application[J]. ACS Appl. Mater. Interfaces, 2016, 8(18): 11459-65. |
52 | BREITWIESER M, KLINGELE M, VIERRATH S, et al. Tailoring the membrane-electrode interface in PEM fuel cells: a review and perspective on novel engineering approaches[J]. Advanced Energy Materials, 2018, 8(4): 1701257. |
53 | KIM S M, KANG Y S, AHN C, et al. Prism-patterned Nafion membrane for enhanced water transport in polymer electrolyte membrane fuel cell[J]. Journal of Power Sources, 2016, 317: 19-24. |
54 | LEU H J, CHIU K F, LIN C Y. Smart coating process of proton-exchange membrane for polymer electrolyte fuel cell[J]. Applied Energy, 2013, 112: 1126-1130. |
55 | AIZAWA M, GYOTEN H. Effect of micro-patterned membranes on the cathode performances for PEM fuel cells under low humidity[J]. Journal of the Electrochemical Society, 2013, 160(4): F417-F428. |
56 | CHEN M, WANG M, YANG Z, et al. A novel catalyst layer structure based surface-patterned Nafion® membrane for high-performance direct methanol fuel cell[J]. Electrochimica Acta, 2018, 263: 201-208. |
57 | JEON Y, KIM D J, KOH J K, et al. Interface-designed membranes with shape-controlled patterns for high-performance polymer electrolyte membrane fuel cells[J]. Scientific Reports, 2015, 5: 16394. |
58 | YANG C, HAN N, WANG Y, et al. A novel approach to fabricate membrane electrode assembly by directly coating the Nafion ionomer on catalyst layers for proton-exchange membrane fuel cells[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(26): 9803-9812. |
[1] | 王太, 苏硕, 李晟瑞, 马小龙, 刘春涛. 交流电场中贴壁气泡的动力学行为[J]. 化工进展, 2023, 42(S1): 133-141. |
[2] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[3] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[4] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[5] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[6] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[7] | 王家庆, 宋广伟, 李强, 郭帅成, DAI Qingli. 橡胶混凝土界面改性方法及性能提升路径[J]. 化工进展, 2023, 42(S1): 328-343. |
[8] | 许家珩, 李永胜, 罗春欢, 苏庆泉. 甲醇水蒸气重整工艺的优化[J]. 化工进展, 2023, 42(S1): 41-46. |
[9] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[10] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[11] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[12] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[13] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[14] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[15] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |