化工进展 ›› 2021, Vol. 40 ›› Issue (7): 3791-3802.DOI: 10.16085/j.issn.1000-6613.2020-1633
周硕林1(), 赖金花2, 游高林1, 刘贤响2, 尹笃林2()
收稿日期:
2020-08-17
修回日期:
2020-11-12
出版日期:
2021-07-06
发布日期:
2021-07-19
通讯作者:
尹笃林
作者简介:
周硕林(1989—),男,博士,讲师,研究方向为催化及新材料。E-mail: 基金资助:
ZHOU Shuolin1(), LAI Jinhua2, YOU Gaolin1, LIU Xianxiang2, YIN Dulin2()
Received:
2020-08-17
Revised:
2020-11-12
Online:
2021-07-06
Published:
2021-07-19
Contact:
YIN Dulin
摘要:
水热合成法制备质子化钛纳米管(TNTs)是一种操作简单、条件温和、适合规模化生产的方法,受到广泛关注,由此方法得到的钛纳米管具有开放的管道结构、比表面积大、稳定性高、离子交换等特点。本文简述了水热法制备TNTs的机理,分析了前体材料、水热反应条件、后处理方法等因素对水热法制备TNTs的影响规律,介绍了近年来TNTs作为载体、光催化剂、酸催化剂、吸附剂的应用研究现状。分析表明,通过调控水热条件及后处理方法可获得结构、性能各异的TNTs材料,并且利用离子交换、掺杂、有机表面修饰等多样化方法获得改性TNTs材料,进一步提升了TNTs材料在光催化、酸催化、吸附等方面的性能。最后指出,未来主要研究热点是提高水热法合成效率、优化化学改性策略,获得性能各异的TNTs材料。
中图分类号:
周硕林, 赖金花, 游高林, 刘贤响, 尹笃林. 水热法制备质子化钛纳米管的影响因素及其应用研究进展[J]. 化工进展, 2021, 40(7): 3791-3802.
ZHOU Shuolin, LAI Jinhua, YOU Gaolin, LIU Xianxiang, YIN Dulin. Progress in influence factors and applications of protonated titanate nanotubes prepared via hydrothermal method[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3791-3802.
前体 | 水热温度,时间/℃,h | 氢氧化钠浓度/mol·L-1 | 比表面积/m2·g-1 | 孔体积/cm3·g-1 | 纳米管外径,内径/ nm | 参考文献 |
---|---|---|---|---|---|---|
金红石型TiO2 | 180,8 | 10 | 20 | — | 9.6,4.8 | [ |
锐钛矿型TiO2 | 150~155,24 | 10 | 286 | 0.947 | 12,6 | [ |
锐钛矿型TiO2 | 160,24 | — | 234 | 0.62 | — | [ |
锐钛矿型TiO2 | 160,48 | — | 314 | 0.81 | — | [ |
锐钛矿型TiO2 | 160,72 | — | 182 | 0.74 | — | [ |
锐钛矿型TiO2 | 130,6 | 8 | 210.32 | — | 8 | [ |
P25 | 150,24 | 10 | 325.4 | — | — | [ |
P25 | 180,10 | 10 | 156.42 | 0.316 | 27.48,16.90 | [ |
P25 | 180,24 | 10 | 197.70 | 0.325 | 25.21,15.91 | [ |
P25 | 180,48 | 10 | 20.88 | 0.060 | 37.78,9.44 | [ |
P25 | 120,48 | 10 | 408 | 2.43 | 8,3.5 | [ |
无定形的TiO2 | 室温,48 | 10 | 735 | 1.63 | 3,0.7 | [ |
表1 不同前体制备钛纳米管
前体 | 水热温度,时间/℃,h | 氢氧化钠浓度/mol·L-1 | 比表面积/m2·g-1 | 孔体积/cm3·g-1 | 纳米管外径,内径/ nm | 参考文献 |
---|---|---|---|---|---|---|
金红石型TiO2 | 180,8 | 10 | 20 | — | 9.6,4.8 | [ |
锐钛矿型TiO2 | 150~155,24 | 10 | 286 | 0.947 | 12,6 | [ |
锐钛矿型TiO2 | 160,24 | — | 234 | 0.62 | — | [ |
锐钛矿型TiO2 | 160,48 | — | 314 | 0.81 | — | [ |
锐钛矿型TiO2 | 160,72 | — | 182 | 0.74 | — | [ |
锐钛矿型TiO2 | 130,6 | 8 | 210.32 | — | 8 | [ |
P25 | 150,24 | 10 | 325.4 | — | — | [ |
P25 | 180,10 | 10 | 156.42 | 0.316 | 27.48,16.90 | [ |
P25 | 180,24 | 10 | 197.70 | 0.325 | 25.21,15.91 | [ |
P25 | 180,48 | 10 | 20.88 | 0.060 | 37.78,9.44 | [ |
P25 | 120,48 | 10 | 408 | 2.43 | 8,3.5 | [ |
无定形的TiO2 | 室温,48 | 10 | 735 | 1.63 | 3,0.7 | [ |
酸 | 酸浓度/mol·L-1 | 水热温度,时间/℃,h | 比表面积/m2·g-1 | 孔体积/cm3·g-1 | 参考文献 |
---|---|---|---|---|---|
HCl | 0.025 | 140,20 | 206 | 0.52 | [ |
HCl | 0.05 | 140,20 | 239 | 0.53 | [ |
HCl | 0.075 | 140,20 | 227 | 0.55 | [ |
HCl | 0.1 | 140,20 | 218 | 0.53 | [ |
HCl | 0.1 | 130,24 | 307 | 0.85 | [ |
HCl | 0.5 | 130,24 | 392 | 1.13 | [ |
HCl | 1.0 | 130,24 | 333 | 0.56 | [ |
HCl | — | 140,24 | 375 | 1.33 | [ |
H2SO4 | — | 140,24 | 369 | 1.49 | [ |
HNO3 | — | 140,24 | 422 | 1.37 | [ |
HAc | 0.1 | 135,72 | 324 | 1.13 | [ |
表2 酸处理类型及浓度对钛纳米管结构的影响
酸 | 酸浓度/mol·L-1 | 水热温度,时间/℃,h | 比表面积/m2·g-1 | 孔体积/cm3·g-1 | 参考文献 |
---|---|---|---|---|---|
HCl | 0.025 | 140,20 | 206 | 0.52 | [ |
HCl | 0.05 | 140,20 | 239 | 0.53 | [ |
HCl | 0.075 | 140,20 | 227 | 0.55 | [ |
HCl | 0.1 | 140,20 | 218 | 0.53 | [ |
HCl | 0.1 | 130,24 | 307 | 0.85 | [ |
HCl | 0.5 | 130,24 | 392 | 1.13 | [ |
HCl | 1.0 | 130,24 | 333 | 0.56 | [ |
HCl | — | 140,24 | 375 | 1.33 | [ |
H2SO4 | — | 140,24 | 369 | 1.49 | [ |
HNO3 | — | 140,24 | 422 | 1.37 | [ |
HAc | 0.1 | 135,72 | 324 | 1.13 | [ |
催化剂 | 应用 | 能带/eV | 文献 |
---|---|---|---|
TNTs | 光催化降解亚甲基蓝 | 3.00 | [ |
TNTs | 光催化降解亚甲基蓝 | 3.15 | [ |
Fe/TNTs | 光催化降解活性红X-3B | 3.02~2.75 | [ |
Fe-TNTs | 光催化降解罗丹明B | 2.83~2.60 | [ |
La3+-TNTs | 光催化降解气态乙苯 | — | [ |
Co-TNTs | 光催化降解亚甲基蓝 | — | [ |
Mo-TNTs | 光催化还原NO2和CO2 | <2.6 | [ |
SnO2/TNTs | 光催化降解亚甲基蓝 | — | [ |
SnO2/TNTs | 光催化降解亚甲基蓝 | — | [ |
(Cu/TNTs_O)_R | 光催化灭活大肠杆菌 | — | [ |
MnO2/TNTs | 光催化降解17β-雌二醇 | 2.7 | [ |
Ag@TNTs-0.5 | 光催化降解阿替洛尔 | 2.76 | [ |
Ag@TNTs-1.0 | 光催化降解阿替洛尔 | 2.87 | [ |
Ag@TNTs-2.5 | 光催化降解阿替洛尔 | 2.73 | [ |
Al-Fe-TNTs | 光催化降解腐殖酸 | 3.06 | [ |
Pt-V2O5/TNTs | 光催化降解罗丹明B | 2.7 | [ |
Pt-WO3/TNTs | 光催化降解罗丹明B | 2.9 | [ |
C-TNTs | 光催化氧化、吸附汞 | 3.17 | [ |
N-TNTs | 光催化降解罗丹明B | — | [ |
C/S@TNTs | 光催化分解水制氢 | 2.33 | [ |
C,N,F/TNTs | 光催化降解甲基橙 | 3.04 | [ |
Cu,N-TNTs | 光催化降解双酚A | — | [ |
rGO/TNTs | 光催化降解亚甲基蓝 | — | [ |
TNTs@GO | 光催化降解亚甲基蓝 | — | [ |
SWCNTs/TNTs | 光催化乙醛 | — | [ |
CQDs/TNTs | 光催化降解亚甲基蓝 | — | [ |
维生素B12-TNTs | 光催化降解苯酚、罗丹明B | 3.11 | [ |
FeTCPP/TNTs | 光催化降解亚甲基蓝 | — | [ |
表3 钛纳米管材料在光催化中的应用
催化剂 | 应用 | 能带/eV | 文献 |
---|---|---|---|
TNTs | 光催化降解亚甲基蓝 | 3.00 | [ |
TNTs | 光催化降解亚甲基蓝 | 3.15 | [ |
Fe/TNTs | 光催化降解活性红X-3B | 3.02~2.75 | [ |
Fe-TNTs | 光催化降解罗丹明B | 2.83~2.60 | [ |
La3+-TNTs | 光催化降解气态乙苯 | — | [ |
Co-TNTs | 光催化降解亚甲基蓝 | — | [ |
Mo-TNTs | 光催化还原NO2和CO2 | <2.6 | [ |
SnO2/TNTs | 光催化降解亚甲基蓝 | — | [ |
SnO2/TNTs | 光催化降解亚甲基蓝 | — | [ |
(Cu/TNTs_O)_R | 光催化灭活大肠杆菌 | — | [ |
MnO2/TNTs | 光催化降解17β-雌二醇 | 2.7 | [ |
Ag@TNTs-0.5 | 光催化降解阿替洛尔 | 2.76 | [ |
Ag@TNTs-1.0 | 光催化降解阿替洛尔 | 2.87 | [ |
Ag@TNTs-2.5 | 光催化降解阿替洛尔 | 2.73 | [ |
Al-Fe-TNTs | 光催化降解腐殖酸 | 3.06 | [ |
Pt-V2O5/TNTs | 光催化降解罗丹明B | 2.7 | [ |
Pt-WO3/TNTs | 光催化降解罗丹明B | 2.9 | [ |
C-TNTs | 光催化氧化、吸附汞 | 3.17 | [ |
N-TNTs | 光催化降解罗丹明B | — | [ |
C/S@TNTs | 光催化分解水制氢 | 2.33 | [ |
C,N,F/TNTs | 光催化降解甲基橙 | 3.04 | [ |
Cu,N-TNTs | 光催化降解双酚A | — | [ |
rGO/TNTs | 光催化降解亚甲基蓝 | — | [ |
TNTs@GO | 光催化降解亚甲基蓝 | — | [ |
SWCNTs/TNTs | 光催化乙醛 | — | [ |
CQDs/TNTs | 光催化降解亚甲基蓝 | — | [ |
维生素B12-TNTs | 光催化降解苯酚、罗丹明B | 3.11 | [ |
FeTCPP/TNTs | 光催化降解亚甲基蓝 | — | [ |
催化剂 | 催化合成反应 | 酸量/mmol·g-1 | 参考文献 |
---|---|---|---|
TNTs | 甲苯与苄基氯的傅克反应 | 0.35 | [ |
TNTs | 2-甲基呋喃与正丁醛的羟烷基化反应 | 1.1 | [ |
TNTs | 苯甲醛与环己酮的缩合反应 | 0.206 | [ |
TNTs | 甘油与丙酮的缩合反应 | 0.25~0.33 | [ |
TNTs | 合成氨基膦酸酯 | 3.775 | [ |
Nb/TNTs | 甲苯与苯甲醇的傅克反应 | 0.22 | [ |
La/TNTs | 氰基乙酸乙酯与丁醛的缩合反应 | — | [ |
Pt/TNTs | 甘油与丙酮的缩合反应 | 0.261 | [ |
TNTs-SO3H | 乙酰丙酸与正丁醇的酯化反应 | 0.5~0.634 | [ |
表4 钛纳米管材料在有机合成中的应用
催化剂 | 催化合成反应 | 酸量/mmol·g-1 | 参考文献 |
---|---|---|---|
TNTs | 甲苯与苄基氯的傅克反应 | 0.35 | [ |
TNTs | 2-甲基呋喃与正丁醛的羟烷基化反应 | 1.1 | [ |
TNTs | 苯甲醛与环己酮的缩合反应 | 0.206 | [ |
TNTs | 甘油与丙酮的缩合反应 | 0.25~0.33 | [ |
TNTs | 合成氨基膦酸酯 | 3.775 | [ |
Nb/TNTs | 甲苯与苯甲醇的傅克反应 | 0.22 | [ |
La/TNTs | 氰基乙酸乙酯与丁醛的缩合反应 | — | [ |
Pt/TNTs | 甘油与丙酮的缩合反应 | 0.261 | [ |
TNTs-SO3H | 乙酰丙酸与正丁醇的酯化反应 | 0.5~0.634 | [ |
吸附剂 | 比表面积/m2·g-1 | 吸附底物 | 吸附能力/mg·g-1 | 参考文献 |
---|---|---|---|---|
TNTs | 325.4 | Zn(Ⅱ) | 139.44 | [ |
TNTs | 272.31 | Pb(Ⅱ) | 520.83 | [ |
TNTs | 272.31 | Cd(Ⅱ) | 238.61 | [ |
TNTs | 240.2 | Cd(Ⅱ) | 239.8 | [ |
TNTs | 272.31 | Cu(Ⅱ) | 120 | [ |
TNTs | 367.0 | Cu(Ⅱ) | 160 | [ |
TNTs | 272 | U(Ⅵ) | 333 | [ |
PA/TNTs | 295.4 | U(Ⅵ) | 276.1 | [ |
TNTs@PAC | 654.2 | Pb(Ⅱ) | 318.5 | [ |
NH2-TNTs | 243.3 | Cr(Ⅵ) | 153.85 | [ |
TEOA-TNTs | 82.02 | Ag(Ⅰ) | 396 | [ |
表5 钛纳米管材料对金属离子的吸附性能比较
吸附剂 | 比表面积/m2·g-1 | 吸附底物 | 吸附能力/mg·g-1 | 参考文献 |
---|---|---|---|---|
TNTs | 325.4 | Zn(Ⅱ) | 139.44 | [ |
TNTs | 272.31 | Pb(Ⅱ) | 520.83 | [ |
TNTs | 272.31 | Cd(Ⅱ) | 238.61 | [ |
TNTs | 240.2 | Cd(Ⅱ) | 239.8 | [ |
TNTs | 272.31 | Cu(Ⅱ) | 120 | [ |
TNTs | 367.0 | Cu(Ⅱ) | 160 | [ |
TNTs | 272 | U(Ⅵ) | 333 | [ |
PA/TNTs | 295.4 | U(Ⅵ) | 276.1 | [ |
TNTs@PAC | 654.2 | Pb(Ⅱ) | 318.5 | [ |
NH2-TNTs | 243.3 | Cr(Ⅵ) | 153.85 | [ |
TEOA-TNTs | 82.02 | Ag(Ⅰ) | 396 | [ |
吸附剂 | 比表面积 /m2·g-1 | 吸附底物 | 吸附能力/mg·g-1 | 参考文献 |
---|---|---|---|---|
TNTs | 197.7 | 亚甲基蓝 | 21.9 | [ |
TNTs | 157.9 | 亚甲基蓝 | 133.33 | [ |
TNTs | 393.3 | 碱性品红 | 68.6 | [ |
TNTs-CTAC | 277.4 | 2,4,6-三氯苯酚 | 59.85 | [ |
TNTs-CTAC | 277.4 | 土霉素 | 64.09 | [ |
TNTs-CTAC | 277.4 | 2,4-二氯苯酚 | 51.74 | [ |
TNTs-CTAC | 277.4 | 托拉酰胺 | 25.27 | [ |
TNTs-CTAC | 277.4 | 卡托普利 | 35.55 | [ |
TNTs-DDBAB | 257 | 苯酚 | 226.24 | [ |
MTNTs-ODA | — | 油 | >150 | [ |
表6 钛纳米管材料对染料等有机物的吸附性能比较
吸附剂 | 比表面积 /m2·g-1 | 吸附底物 | 吸附能力/mg·g-1 | 参考文献 |
---|---|---|---|---|
TNTs | 197.7 | 亚甲基蓝 | 21.9 | [ |
TNTs | 157.9 | 亚甲基蓝 | 133.33 | [ |
TNTs | 393.3 | 碱性品红 | 68.6 | [ |
TNTs-CTAC | 277.4 | 2,4,6-三氯苯酚 | 59.85 | [ |
TNTs-CTAC | 277.4 | 土霉素 | 64.09 | [ |
TNTs-CTAC | 277.4 | 2,4-二氯苯酚 | 51.74 | [ |
TNTs-CTAC | 277.4 | 托拉酰胺 | 25.27 | [ |
TNTs-CTAC | 277.4 | 卡托普利 | 35.55 | [ |
TNTs-DDBAB | 257 | 苯酚 | 226.24 | [ |
MTNTs-ODA | — | 油 | >150 | [ |
吸附剂 | 比表面积/m2·g-1 | 孔体积/cm3·g-1 | 吸附温度/℃ | 吸附能力/mg·g-1 | 参考文献 |
---|---|---|---|---|---|
TNTs | 57.3 | 0.154 | 30 | 15.4 | [ |
TNTs-MEA-56 | 55.66 | 0.38 | 60 | 55 | [ |
TNTs-EDA-47 | 67.84 | 0.40 | 60 | 62.48 | [ |
TNTs-TETA-51 | 57.36 | 0.38 | 60 | 126.28 | [ |
TNTs-TEPA-22 | 118.17 | 0.55 | 60 | 99.44 | [ |
TNTs-TEPA-43 | 57.93 | 0.41 | 60 | 174.24 | [ |
TNTs-TEPA-69 | 28.64 | 0.26 | 60 | 192.28 | [ |
TNTs-TEPA-91 | 13.24 | 0.15 | 60 | 181.72 | [ |
TNTs | 320.4 | 1.07 | 100 | 10.1 | [ |
PEI-TNTs-20 | 178.3 | 0.73 | 100 | 42.1 | [ |
PEI-TNTs-33 | 93.3 | 0.49 | 100 | 90.8 | [ |
PEI-TNTs-43 | 40.2 | 0.26 | 100 | 113.5 | [ |
PEI-TNTs-50 | 17.2 | 0.1 | 100 | 130.8 | [ |
TPEDA-TNTs | 122 | 0.482 | 25 | 52.8 | [ |
表7 钛纳米管材料对CO2吸附性能比较
吸附剂 | 比表面积/m2·g-1 | 孔体积/cm3·g-1 | 吸附温度/℃ | 吸附能力/mg·g-1 | 参考文献 |
---|---|---|---|---|---|
TNTs | 57.3 | 0.154 | 30 | 15.4 | [ |
TNTs-MEA-56 | 55.66 | 0.38 | 60 | 55 | [ |
TNTs-EDA-47 | 67.84 | 0.40 | 60 | 62.48 | [ |
TNTs-TETA-51 | 57.36 | 0.38 | 60 | 126.28 | [ |
TNTs-TEPA-22 | 118.17 | 0.55 | 60 | 99.44 | [ |
TNTs-TEPA-43 | 57.93 | 0.41 | 60 | 174.24 | [ |
TNTs-TEPA-69 | 28.64 | 0.26 | 60 | 192.28 | [ |
TNTs-TEPA-91 | 13.24 | 0.15 | 60 | 181.72 | [ |
TNTs | 320.4 | 1.07 | 100 | 10.1 | [ |
PEI-TNTs-20 | 178.3 | 0.73 | 100 | 42.1 | [ |
PEI-TNTs-33 | 93.3 | 0.49 | 100 | 90.8 | [ |
PEI-TNTs-43 | 40.2 | 0.26 | 100 | 113.5 | [ |
PEI-TNTs-50 | 17.2 | 0.1 | 100 | 130.8 | [ |
TPEDA-TNTs | 122 | 0.482 | 25 | 52.8 | [ |
21 | LINGHU Wensheng, SUN Yanxia, YANG Hai, et al. Macroscopic and spectroscopic exploration on the removal performance of titanate nanotubes towards Zn(Ⅱ)[J]. Journal of Molecular Liquids, 2017, 244: 146-153. |
22 | SUBRAMANIAM M N, GOH P S, ABDULLAH N, et al. Adsorption and photocatalytic degradation of methylene blue using high surface area titanate nanotubes (TNT) synthesized via hydrothermal method[J]. Journal of Nanoparticle Research, 2017, 19(6): 220. |
23 | Misaki OTA, HIROTA Yuichiro, UCHIDA Yoshiaki, et al. Low temperature synthesized H2Ti3O7 nanotubes with a high CO2 adsorption property by amine modification[J]. Langmuir, 2018, 34(23): 6814-6819. |
24 | YUAN Zhongyong, SU Baolian. Titanium oxide nanotubes, nanofibers and nanowires[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 241: 173-183. |
25 | Thu Ha Thi VU, Hang Thi AU, TRAN Lien Thi, et al. Synthesis of titanium dioxide nanotubes via one-step dynamic hydrothermal process[J]. Journal of Materials Science, 2014, 49(16): 5617-5625. |
26 | Mariana HINOJOSA-REYES, Roberto CAMPOSECO-SOLIS, RUIZ Facundo. H2Ti3O7 titanate nanotubes for highly effective adsorption of basic fuchsin dye for water purification[J]. Microporous and Mesoporous Materials, 2019, 276: 183-191. |
27 | GYAWALI Gobinda, Jieun SON, HAO Nguyen Huy, et al. Synthesis of TiO2 nanotubes using different alkaline media and their applications in photocatalysis and DSSCs[J]. Research on Chemical Intermediates, 2017, 43(9): 5055-5065. |
28 | BAVYKIN Dmitry V, CRESSEY Barbara A, LIGHT Mark E, et al. An aqueous, alkaline route to titanate nanotubes under atmospheric pressure conditions[J]. Nanotechnology, 2008, 19(27): 275604. |
29 | CHIANG H L H, OU H H, HUANG C W. Adsorption of Cu(Ⅱ) in aqueous solution using microwave-assisted titanate nanotubes[J]. Applied Nanoscience, 2019, 9(4): 505-514. |
30 | Laura TORRENTE-MURCIANO, LAPKIN Alexei A, CHADWICK David. Synthesis of high aspect ratio titanate nanotubes[J]. Journal of Materials Chemistry, 2010, 20(31): 6484-6489. |
31 | SONG I, LEE H, KIM D H. Rotation-assisted hydrothermal synthesis of thermally stable multiwalled titanate nanotubes and their application to selective catalytic reduction of NO with NH3[J]. ACS Applied Materials & Interfaces, 2018, 10(49): 42249-42257. |
32 | POUDEL B, WANG W Z, DAMES C, et al. Formation of crystallized titania nanotubes and their transformation into nanowires[J]. Nanotechnology, 2005, 16(9): 1935-1940. |
1 | OU H H, LO S L. Review of titania nanotubes synthesized via the hydrothermal treatment: fabrication, modification, and application[J]. Separation and Purification Technology, 2007, 58(1): 179-191. |
2 | ROY Poulomi, BERGER Steffen, SCHMUKI Patrik. TiO2 nanotubes: synthesis and applications[J]. Angewandte Chemie International Edition, 2011, 50(13): 2904-2939. |
33 | QAMAR M, YOON C R, OH H J, et al. Effect of post treatments on the structure and thermal stability of titanate nanotubes[J]. Nanotechnology, 2006, 17(24): 5922-5929. |
34 | TSAI C Y, LIU C W, CHAN Y H, et al. Development of HCl-treated titania nanotube photocatalysts for dye photodegradation and low-concentration elemental mercury removal[J]. Catalysis Today, 2017, 297: 113-123. |
35 | CAMPOSECO Roberto, CASTILLO Salvador, MEJIACENTENO Isidro, et al. Synthesis of protonated titanate nanotubes tailored by the washing step: effect upon acid properties and photocatalytic activity[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 341: 87-96. |
36 | SLUBAN Melita, COJOCARU Bogdan, PARVULESCU Vasile I, et al. Protonated titanate nanotubes as solid acid catalyst for aldol condensation[J]. Journal of Catalysis, 2017, 346: 161-169. |
37 | BAVYKIN Dmitry V, CARRAVETTA Marina, KULAK Alexander N, et al. Application of magic-angle spinning NMR to examine the nature of protons in titanate nanotubes[J]. Chemistry of Materials, 2010, 22(8): 2458-2465. |
38 | KUKOVECZ Akos, Mária HODOS, Zoltán KÓNYA, et al. Complex-assisted one-step synthesis of ion-exchangeable titanate nanotubes decorated with CdS nanoparticles[J]. Chemical Physics Letters, 2005, 411(4/5/6): 445-449. |
39 | SANTOS-LÓPEZ Iván Alonso, HANDY Brent E, Roberto GARCÍA-DE-LEÓN. Titanate nanotubes as support of solid base catalyst[J]. Thermochimica Acta, 2013, 567: 85-92. |
40 | NIAN J N, CHEN S A, TSAI C C, et al. Structural feature and catalytic performance of Cu species distributed over TiO2 nanotubes[J]. The Journal of Physical Chemistry B, 2006, 110(51): 25817-25824. |
41 | BAVYKIN Dmitry V, LAPKIN Alexei A, PLUCINSKI Pawel K, et al. TiO2 nanotube-supported ruthenium(Ⅲ) hydrated oxide: a highly active catalyst for selective oxidation of alcohols by oxygen[J]. Journal of Catalysis, 2005, 235(1): 10-17. |
42 | CAMPOSECO Roberto, CASTILLO Salvador, NAVARRETE J, et al. Synthesis, characterization and photocatalytic activity of TiO2 nanostructures: nanotubes, nanofibers, nanowires and nanoparticles[J]. Catalysis Today, 2016, 266: 90-101. |
43 | WEI Xiuzhen, WANG Huijuan, ZHU Guangfeng, et al. Iron-doped TiO2 nanotubes with high photocatalytic activity under visible light synthesized by an ultrasonic-assisted sol-hydrothermal method[J]. Ceramics International, 2013, 39(4): 4009-4016. |
44 | PANG Yean Ling, ABDULLAH Ahmad Zuhairi. Effect of low Fe3+ doping on characteristics, sonocatalytic activity and reusability of TiO2 nanotubes catalysts for removal of Rhodamine B from water[J]. Journal of Hazardous Materials, 2012, 235/236: 326-335. |
45 | CHENG Zhuowei, FENG Li, CHEN Jianmeng, et al. Photocatalytic conversion of gaseous ethylbenzene on lanthanum-doped titanium dioxide nanotubes[J]. Journal of Hazardous Materials, 2013, 254/255: 354-363. |
46 | BARROCAS B, SILVESTRE A J, ROLO A G, et al. The effect of ionic Co presence on the structural, optical and photocatalytic properties of modified cobalt-titanate nanotubes[J]. Physical Chemistry Chemical Physics, 2016, 18(27): 18081-18093. |
47 | NGUYEN N H, WU H Y, BAI H. Photocatalytic reduction of NO2 and CO2 using molybdenum-doped titania nanotubes[J]. Chemical Engineering Journal, 2015, 269: 60-66. |
48 | TSAI C Y, LIU C W, FAN C, et al. Synthesis of a SnO2/TNT heterojunction nanocomposite as a high-performance photocatalyst[J]. The Journal of Physical Chemistry C, 2017, 121(11): 6050-6059. |
49 | Viet Pham VAN, Tran Hong HUY, SANG Nguyen Xuan, et al. One-step hydrothermal synthesis and characterisation of SnO2 nanoparticle-loaded TiO2 nanotubes with high photocatalytic performance under sunlight[J]. Journal of Materials Science, 2018, 53(5): 3364-3374. |
50 | ERJAVEC Boštjan, Tatjana TIŠLER, TCHERNYCHOVA Elena, et al. Self-doped Cu-deposited titania nanotubes as efficient visible light photocatalyst[J]. Catalysis Letters, 2017, 147(7): 1686-1695. |
51 | DU Penghui, CHANG Junjun, ZHAO He, et al. Sea-buckthorn-like MnO2 decorated titanate nanotubes with oxidation property and photocatalytic activity for enhanced degradation of 17β-estradiol under solar light[J]. ACS Applied Energy Materials, 2018, 1(5): 2123-2133. |
52 | Mariana HINOJOSA-REYES, Roberto CAMPOSECO-SOLÍS, RUIZ Facundo, et al. H2Ti3O7 nanotubes decorated with silver nanoparticles for photocatalytic degradation of atenolol[J]. Journal of Nanomaterials, 2017. DOI: 10.1155/2017/9610419. |
53 | YUAN Rongfang, ZHOU Beihai, HUA Duo, et al. Enhanced photocatalytic degradation of humic acids using Al and Fe co-doped TiO2 nanotubes under UV/ozonation for drinking water purification[J]. Journal of Hazardous Materials, 2013, 262: 527-538. |
54 | CAMPOSECO Roberto, CASTILLO Salvador, Mariana HINOJOSA-REYES, et al. Pt-V2O5/NT and Pt-WO3/NT titanate nanotubes with strong photocatalytic activity under visible light[J]. Chemistry Select, 2019, 4(3): 1023-1030. |
55 | ZHUANG Zhuokai, YANG Zhenmei, ZHOU Siyao, et al. Synergistic photocatalytic oxidation and adsorption of elemental mercury by carbon modified titanium dioxide nanotubes under visible light LED irradiation[J]. Chemical Engineering Journal, 2014, 253: 16-23. |
56 | HU Chengching, Tzuchien HSU, Liheng KAO. One-step cohydrothermal synthesis of nitrogen-doped titanium oxide nanotubes with enhanced visible light photocatalytic activity[J]. International Journal of Photoenergy, 2012. DOI:10.1155/2012/391958. |
57 | YANG Xu, LIANG Huagen, WU Liangpeng, et al. High performance carbon/silica co-decorated TiO2 nanotubes for visible-light driven water splitting[J]. Materials Research Bulletin, 2017, 93: 162-169. |
58 | WANG X, WANG L L, GUO D, et al. Fabrication and photocatalytic performance of C, N, F-tridoped TiO2 nanotubes[J]. Catalysis Today, 2019, 327: 182-189. |
59 | DOONG Rueyan, LIAO Chunyi. Enhanced visible-light-responsive photodegradation of bisphenol A by Cu, N-codoped titanate nanotubes prepared by microwave-assisted hydrothermal method[J]. Journal of Hazardous materials, 2017, 322: 254-262. |
60 | NGUYEN C H, JUANG R S. Efficient removal of methylene blue dye by a hybrid adsorption-photocatalysis process using reduced graphene oxide/titanate nanotube composites for water reuse[J]. Journal of Industrial and Engineering Chemistry, 2019, 76: 296-309. |
61 | LEI Xiaoman, LI Xiaolong, RUAN Zhiqiang, et al. Adsorption-photocatalytic degradation of dye pollutant in water by graphite oxide grafted titanate nanotubes[J]. Journal of Molecular Liquids, 2018, 266: 122-131. |
62 | VIJAYAN Baiju K, DIMITRIJEVIC Nada M, Daniel FINKELSTEIN-SHAPIRO, et al. Coupling titania nanotubes and carbon nanotubes to create photocatalytic nanocomposites[J]. ACS Catalysis, 2012, 2(2): 223-229. |
63 | ZHAO Fenfen, RONG Yuefei, WAN Junmin, et al. High photocatalytic performance of carbon quantum Dots/TNTs composites for enhanced photogenerated charges separation under visible light[J]. Catalysis Today, 2018, 315: 162-170. |
64 | SILVA T A, DINIZ J, PAIXÃO L, et al. Novel titanate nanotubes-cyanocobalamin materials: synthesis and enhanced photocatalytic properties for pollutants removal[J]. Solid State Sciences, 2017, 63: 30-41. |
65 | WEI Meng, WAN Junmin, HU Zhiwen, et al. Preparation, characterization and visible-light-driven photocatalytic activity of a novel Fe(Ⅲ) porphyrin-sensitized TiO2 nanotube photocatalyst[J]. Applied Surface Science, 2017, 391: 267-274. |
66 | KITANO Masaaki, NAKAJIMA Kiyotaka, KONDO Junko N, et al. Protonated titanate nanotubes as solid acid catalyst[J]. Journal of the American Chemical Society, 2010, 132(19): 6622-6623. |
67 | LI Shanshan, LI Ning, LI Guangyi, et al. Protonated titanate nanotubes as a highly active catalyst for the synthesis of renewable diesel and jet fuel range alkanes[J]. Applied Catalysis B: Environmental, 2015, 170/171: 124-134. |
68 | REDDY Bhoomireddy Rajendra Prasad, REDDY Peddiahgari Vasu Govardhana, REDDY Bijivemula N. Efficient solvent free synthesis of tertiary α-aminophosphonates using H2Ti3O7 nanotubes as a reusable solid-acid catalyst[J]. New Journal of Chemistry, 2015, 39(12): 9605-9610. |
69 | WADA Emiko, KITANO Masaaki, YAMAMOTO Kazuto, et al. Synthesis of niobium-doped titanate nanotubes as solid acid catalysts [J]. Catalysis Science & Technology, 2016, 6(13): 4832-4839. |
70 | SANTOS Neilson M DOS, ROCHA Jardel M, MATOS Jose M E, et al. Metal cations intercalated titanate nanotubes as catalysts for α,β unsaturated esters production[J]. Applied Catalysis A: General, 2013, 454: 74-80. |
71 | GOMES Igor S, DE CARVALHO Davi C, OLIVEIRA Alcineia C, et al. On the reasons for deactivation of titanate nanotubes with metals catalysts in the acetalization of glycerol with acetone[J]. Chemical Engineering Journal, 2018, 334: 1927-1942. |
72 | 周硕林, 刘贤响, 徐琼, 等. 磺酸功能化钛纳米管催化合成乙酰丙酸正丁酯[J]. 精细化工, 2017, 34(8): 875-879. |
ZHOU Shuolin, LIU Xianxiang, XU Qiong, et al. Sulfonic acid-functionalized titanium oxide nanotubes as a solid acid catalyst for synthesis of n-butyl levulinate[J]. Fine Chemicals, 2017, 34(8): 875-879. | |
73 | ZHOU Shuolin, JIANG Dabo, LIU Xianxiang, et al. Titanate nanotubes-bonded organosulfonic acid as solid acid catalyst for synthesis of butyl levulinate[J]. RSC Advances, 2018, 8(7): 3657-3662. |
74 | ZHOU Shuolin, LIU Xianxiang, LAI Jinhua, et al. Covalently linked organo-sulfonic acid modified titanate nanotube hybrid nanostructures for the catalytic esterification of levulinic acid with n-butyl alcohol[J]. Chemical Engineering Journal, 2019, 361: 571-577. |
75 | REDDY Bhoomireddy Rajendra Prasad, REDDY Motakatla Venkata Krishna, REDDY Peddiahgari Vasu Govardhana, et al. Protonated trititanate nanotubes: an efficient catalyst for one-pot three-component coupling of benzothiazole amines, heterocyclic aldehydes, and dialkyl/diaryl phosphites with a greener perspective[J]. Tetrahedron Letters, 2016, 57(6): 696-702. |
76 | KITANO Masaaki, WADA Emiko, NAKAJIMA Kiyotaka, et al. Protonated titanate nanotubes with Lewis and Brønsted acidity: relationship between nanotube structure and catalytic activity[J]. Chemistry of Materials, 2013, 25(3): 385-393. |
77 | WADA Emiko, KITANO Masaaki, NAKAJIMA Kiyotaka, et al. Effect of preparation conditions on the structural and acid catalytic properties of protonated titanate nanotubes[J]. Journal of Materials Chemistry A, 2013, 1(41): 12768-12774. |
78 | CAMPOSECO Roberto, CASTILLO Salvador, Isidro MEJIA-CENTENO, et al. Effect of the Ti/Na molar ratio on the acidity and the structure of TiO2 nanostructures: nanotubes, nanofibers and nanowires[J]. Materials Characterization, 2014, 90: 113-120. |
79 | Roberto CAMPOSECO R, CASTILLO Salvador, Isidro MEJÍA-CENTENO, et al. Boosted surface acidity in TiO2 and Al2O3-TiO2 nanotubes as catalytic supports[J]. Applied Surface Science, 2015, 356: 115-123. |
80 | CAMPOSECO Roberto, CASTILLO Salvador, Isidro MEJIA-CENTENO, et al. Behavior of Lewis and Brönsted surface acidity featured by Ag, Au, Ce, La, Fe, Mn, Pd, Pt, V and W decorated on protonated titanate nanotubes[J]. Microporous and Mesoporous Materials, 2016, 236: 235-243. |
81 | XIONG Lin, CHEN Cheng, CHEN Qing, et al. Adsorption of Pb(Ⅱ) and Cd(Ⅱ) from aqueous solutions using titanate nanotubes prepared via hydrothermal method[J]. Journal of Hazardous Materials, 2011, 189(3): 741-748. |
82 | WANG Ting, LIU Wen, XU Nan, et al. Adsorption and desorption of Cd(Ⅱ) onto titanate nanotubes and efficient regeneration of tubular structures[J]. Journal of Hazardous Materials, 2013, 250/251: 379-386. |
83 | ZHENG Tong, WANG Ting, MA Ruoqi, et al. Influences of isolated fractions of natural organic matter on adsorption of Cu(Ⅱ) by titanate nanotubes[J]. Science of the Total Environment, 2019, 650: 1412-1418. |
84 | LIU Wen, ZHAO Xiao, WANG Ting, et al. Adsorption of U(Ⅵ) by multilayer titanate nanotubes: effects of inorganic cations, carbonate and natural organic matter[J]. Chemical Engineering Journal, 2016, 286: 427-435. |
85 | YUAN Fang, WU Chunfang, CAI Yawen, et al. Synthesis of phytic acid-decorated titanate nanotubes for high efficient and high selective removal of U(Ⅵ)[J]. Chemical Engineering Journal, 2017, 322: 353-365. |
86 | MA Jun, LI Fan, QIAN Tianwei, et al. Natural organic matter resistant powder activated charcoal supported titanate nanotubes for adsorption of Pb(Ⅱ)[J]. Chemical Engineering Journal, 2017, 315: 191-200. |
87 | WANG Lei, LIU Wen, WANG Ting, et al. Highly efficient adsorption of Cr(Ⅵ) from aqueous solutions by amino-functionalized titanate nanotubes[J]. Chemical Engineering Journal, 2013, 225: 153-163. |
88 | WANG Hui, ZHENG Long, LIU Gonggang, et al. Enhanced adsorption of Ag+ on triethanolamine modified titanate nanotubes[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 537: 28-35. |
89 | XIONG Lin, YANG Ye, Jiaxing MAI, et al. Adsorption behavior of methylene blue onto titanate nanotubes[J]. Chemical Engineering Journal, 2010, 156(2): 313-320. |
90 | Carolina ORONA-NÁVAR, Raul GARCÍA-MORALES, Rodrigo RUBIO-GOVEA, et al. Adsorptive removal of emerging pollutants from groundwater by using modified titanate nanotubes[J]. Journal of Environmental Chemical Engineering, 2018, 6(4): 5332-5340. |
91 | HU Lihe, ZHANG Jixiang, LI Nian, et al. Adsorption of phenol from aqueous solutions using interlayer modified titanate nanotubes[J]. Journal of Chemical Technology & Biotechnology, 2018, 93(8): 2208-2215. |
92 | PATOWARY Manoj, ANANTHAKRISHNAN Rajakumar, PATHAK Khanindra. Effective oil removal from water by magnetically driven superhydrophobic and oleophilic magnetic titania nanotubes[J]. Environmental Science and Pollution Research, 2017, 24(22): 18063-18072. |
93 | BHATTA Lakshminarayana Kudinalli Gopalakrishna, SUBRAMANYAM Seetharamu, CHENGALA Madhusoodana D, et al. Low-temperature CO2 adsorption on titania nanotubes (TNTs)[J]. Surfaces and Interfaces, 2017, 8: 158-162. |
94 | SONG Fujiao, ZHAO Yunxia, CAO Yan, et al. Capture of carbon dioxide from flue gases by amine-functionalized TiO2 nanotubes[J]. Applied Surface Science, 2013, 268: 124-128. |
95 | LIU Jie, LIU Yue, WU Zhongbiao, et al. Polyethyleneimine functionalized protonated titanate nanotubes as superior carbon dioxide adsorbents[J]. Journal of Colloid and Interface Science, 2012, 386(1): 392-397. |
96 | LIU Yue, LIU Jie, YAO Weiyuan, et al. The effects of surface acidity on CO2 adsorption over amine functionalized protonated titanate nanotubes[J]. RSC Advances, 2013, 3(41): 18803-18810. |
97 | SIM S, CHO E B, CHATTERJEE S. H2 and CO2 uptake for hydrogen titanate (H2Ti3O7) nanotubes and nanorods at ambient temperature and pressure[J]. Chemical Engineering Journal, 2016, 303: 64-72. |
3 | AMEUR Nawal, BACHIR Redouane. Study of 1D titanate-based materials-new modification of the synthesis procedure and surface properties-recent applications[J]. ChemistrySelect, 2020, 5(3): 1164-1185. |
4 | 汪静茹, 李文尧, 姚宝殿. 水热法制备二氧化钛纳米管:形成机理、影响因素及应用[J]. 材料导报, 2016, 30(5): 144-152. |
WANG Jingru, LI Wenyao, YAO Baodian. Hydrothermally produced titania nanotubes: formation mechanism, influence factors and applications[J]. Material Review, 2016, 30(5): 144-152. | |
5 | KASUGA Tomoko, HIRAMATSU Masayoshi, HOSON Akihiko, et al. Formation of titanium oxide nanotube[J]. Langmuir, 1998, 14(12): 3160-3163. |
6 | KASUGA Tomoko, HIRAMATSU Masayoshi, HOSON Akihiko, et al. Titania nanotubes prepared by chemical processing[J]. Advanced Materials, 1999, 11(15): 1307-1311. |
7 | DU G H, CHEN Q, CHE R C, et al. Preparation and structure analysis of titanium oxide nanotubes[J]. Applied Physics Letters, 2001, 79(22): 3702-3704. |
8 | WANG Y Q, HU G Q, DUAN X F, et al. Microstructure and formation mechanism of titanium dioxide nanotubes[J]. Chemical Physics Letters, 2002, 365(5/6): 427-431. |
9 | YAO B D, CHAN Y F, ZHANG X Y, et al. Formation mechanism of TiO2 nanotubes[J]. Applied Physics Letters, 2003, 82(2): 281-283. |
10 | BAVYKIN Dmitry V, PARMON Valentin N, LAPKIN Alexei A, et al. The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes[J]. Journal of Materials Chemistry, 2004, 14(22): 3370-3377. |
11 | YANG Jianjun, JIN Zhensheng, WANG Xiaodong, et al. Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2[J]. Dalton Transactions, 2003, 20: 3898-3901. |
12 | NAKAHIRA Atsushi, KUBO Takashi, NUMAKO Chiya. Formation mechanism of TiO2-derived titanate nanotubes prepared by the hydrothermal process[J]. Inorganic Chemistry, 2010, 49(13): 5845-5852. |
13 | PANG Y L, LIM S, ONG H C, et al. A critical review on the recent progress of synthesizing techniques and fabrication of TiO2-based nanotubes photocatalysts[J]. Applied Catalysis A: General, 2014, 481: 127-142. |
14 | TSAI C C, TENG H. Structural features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatments[J]. Chemistry of Materials, 2006, 18(2): 367-373. |
15 | SALLEM Fadoua, CHASSAGNON Rémi, MEGRICHE Adel, et al. Effect of mechanical stirring and temperature on dynamic hydrothermal synthesis of titanate nanotubes[J]. Journal of Alloys and Compounds, 2017, 722: 785-796. |
16 | Alberto SANDOVAl, Cristina HERNÁNDEZ-VENTURA, KLIMOVA Tatiana E. Titanate nanotubes for removal of methylene blue dye by combined adsorption and photocatalysis[J]. Fuel, 2017, 198: 22-30. |
17 | Luciana FERNÁNDEZ-WERNER, PIGNANELLI Fernando, MONTENEGRO Benjamín, et al. Characterization of titanate nanotubes for energy applications[J]. Journal of Energy Storage, 2017, 12: 66-77. |
18 | DE CARVALHO Davi C, OLIVEIRa Alcemira C, FERREIRA Odair P, et al. Titanate nanotubes as acid catalysts for acetalization of glycerol with acetone: influence of the synthesis time and the role of structure on the catalytic performance[J]. Chemical Engineering Journal, 2017, 313: 1454-1467. |
19 | LI Xuezhao, LIU Wen, NI Jinren. Short-cut synthesis of tri-titanate nanotubes using nano-anatase: mechanism and application as an excellent adsorbent[J]. Microporous and Mesoporous Materials, 2015, 213: 40-47. |
20 | LÓPEZ Zavala Miguel Ngel, LOZANO Morales Samuel Alejandro, Manuel VILA-SANTOS. Synthesis of stable TiO2 nanotubes: effect of hydrothermal treatment, acid washing and annealing temperature[J]. Heliyon, 2017, 3(11): e00456. |
[1] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[2] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[3] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[4] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[5] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[6] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[7] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[8] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[9] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[10] | 高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676. |
[11] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[12] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[13] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[14] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[15] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |