1 | DAS S, KUMAR S, SAMAL S K, et al. A review on superhydrophobic polymer nanocoatings: recent development and applications[J]. Industrial & Engineering Chemistry Research, 2018, 57(8): 2727-2745. | 2 | 张艳平, 董兵海, 王世敏, 等. 耐久性超疏水表面的构建及其研究进展[J]. 功能材料, 2017, 48(6): 6057-6063. | 2 | ZHANG Yanping, DONG Binghai, WANG Shimin, et al. Construction and research progress of durable superhydrophobic surface[J]. Journal of Functional Materials, 2017, 48(6): 6057-6063. | 3 | YOON H, KIM H Y, LATTHE S S, et al. A highly transparent self-cleaning superhydrophobic surface by organosilane-coated alumina particles deposited via electrospraying[J]. Journal of Materials Chemistry A, 2015, 3(21): 11403-11410. | 4 | WANG J, ZHANG C, YANG C M, et al. Superhydrophilic antireflective periodic mesoporous organosilica coating on flexible polyimide substrate with strong abrasion-resistance[J]. ACS Applied Materials & Interfaces, 2017, 9(6): 5468-5476. | 5 | XIAO Z, ZHANG M, FAN W, et al. Highly efficient oil/water separation and trace organic contaminants removal based on superhydrophobic conjugated microporous polymer coated devices[J]. Chemical Engineering Journal, 2017, 326: 640-646. | 6 | LU J Y, SONG Y L, JIANG L, et al. Bio-inspired strategies for anti-icing[J]. ACS Nano, 2014, 8(4): 3152-3169. | 7 | WEN L P, TIAN Y, JIANG L. Bioinspired super-wettability from fundamental research to practical applications[J]. Angewandte Chemie: International Edition, 2015, 54(11): 3387-3399. | 8 | 王萍,王仁芳,方文军. 粗糙表面对神经胶质细胞三维立体形状的影响[J]. 中国生物医学工程学报, 2009, 28(2): 280-284. | 8 | WANG Ping, WANG Renfang, FANG Wenjun. Effects of rough surface on the three-dimensional shape of glial cells[J]. Chinese Journal of Biomedical Engineering, 2009, 28(2): 280-284. | 9 | ENGLAND M W, URATA C, DUNDERDALE G J, et al. Anti-fogging/self-healing properties of clay-containing transparent nanocomposite thin films[J]. ACS Applied Materials & Interfaces, 2016, 8(7): 4318-4322. | 10 | GOLOVIN K, BOBAN M, MABRY J M, et al. Designing self-healing superhydrophobic surfaces with exceptional mechanical durability[J]. ACS Applied Materials & Interfaces, 2017, 9(12): 11212-11223. | 11 | ZHAO H, LAW K Y, SAMBHY V. Fabrication, surface properties and origin of superoleophobicity for a model textured surface[J]. Langmuir, 2011, 27(10): 592-5935. | 12 | ZHANG Y Y, GE Q, YANG L L, et al. Durable superhydrophobic PTFE films through the introduction of micro-and nanostructured pores[J]. Applied Surface Science, 2015, 339(2015): 151-157. | 13 | LIU B, HE Y, FAN Y, et al. Fabricating super-hydrophobic lotus-leaf-like surfaces through soft-lithographic imprinting[J]. Macromolecular Rapid Communications, 2006, 27(21): 1859-1864. | 14 | 肖新颜, 时银龙, 刘建峰. SiO2/含氟硅聚丙烯酸酯超疏水杂化涂层的制备及性能[J]. 华南理工大学学报(自然科学版), 2014, 42(10): 20-24. | 14 | XIAO Xinyan, SHI Yinlong, LIU Jianfeng. Preparation and properties of SiO2/fluorosilicone polyacrylate superhydrophobic hybrid coating [J]. Journal of South China University of Technology (Natural Science Edition), 2014, 42(10): 20-24. | 15 | 侯俊文, 蔡东宝, 叶向东. 一种具有自粘附性能的超疏水自清洁涂层制备方法[J]. 表面技术, 2019, 48(2): 79-85. | 15 | HOU Junwen, CAI Dongbao, YE Xiangdong. The invention relates to a preparation method of superhydrophobic self-cleaning coating with self-adhesive property[J]. Surface Technology, 2019, 48(2): 79-85. | 16 | 赵志强. 聚合物基超疏水涂层的制备与性能研究[D]. 大庆:东北石油大学, 2019. | 16 | ZHAO Zhiqiang. Preparation and properties of polymer-based superhydrophobic coatings[D]. Daqing: Northeast Petroleum University, 2019. | 17 | 占彦龙, 李文, 李宏, 等. PDMS/PTFE杂合固化制备自清洁超疏水涂层[J]. 功能材料, 2017, 48(6): 6187-6192. | 17 | ZHAN Yanlong, LI Wen, LI Hong, et al. PDMS/PTFE heterozygous cured to prepare self-cleaning superhydrophobic coatings[J]. Journal of Functional Materials, 2017, 48(6): 6187-6192. | 18 | DAS I, DE G. Zirconia based superhydrophobic coatings on cotton fabrics exhibiting excellent durability for versatile use[J]. Scientific Reports, 2015, 5:18503-18514. | 19 | QING Y Q, HU C B, YANG C N, et al. Rough structure of electrodeposition as a template for an ultrarobust self-cleaning surface[J]. ACS Applied Materials and Linterfaces, 2017, 9(19): 16571-16580. | 20 | GUO Z, GUO F, WEN Q, et al. Simple one-pot approach toward robust and boiling-water resistant superhydrophobic cotton fabric and the application in oil/water separation[J]. Journal of Materials Chemistry A, 2017, 5(41): 21866-21874. | 21 | YU N, XIAO X, PAN G. A stearic acidified-ZnO/methyl polysiloxane/PDMS superhydrophobic coating with good mechanical durability and physical repairability[J]. Journal of Dispersion Science and Technology, 2019, 40(11): 1-11. | 22 | WONG W S Y, STACHURSKI Z H, NISBET D R, et al. Ultra-durable and transparent self-cleaning surfaces by large-scale self-assembly of hierarchical interpenetrated polymer networks[J]. ACS Applied Materials & Interfaces, 2016, 8: 13615-13623. | 23 | PENG S, YANG X, TIAN D, et al. Chemically stable and mechanically durable superamphiphobic aluminum surface with a micro/nanoscale binary structure[J]. ACS Applied Materials & Interfaces, 2014, 6(17): 15188-15197. | 24 | YUAN R, WU S, YU P, et al. Superamphiphobic and electroactive nanocomposite toward self-cleaning, antiwear, and anticorrosion coatings[J]. ACS Applied Materials & Interfaces, 2016, 8: 12481-12493. | 25 | ZIMMERMANN J, REIFLER F A, FORTUNATO G, et al. A simple, one-step approach to durable and robust superhydrophobic textiles[J]. Advanced Functional Materials, 2008, 18: 3662-3669. | 26 | EERO H, JANNE H, MIKA S, et al. Micro-micro hierarchy replacing micro-nano hierarchy: a precisely controlled way to produce wear-resistant superhydrophobic polymer surfaces[J]. Langmuir, 2012, 28(41): 14747-14755. | 27 | YIN X, LIU Z, WANG D, et al. Bioinspired self-healing organic materials: chemical mechanisms and fabrications[J]. Journal of Bionic Engineering, 2015, 12(1): 1-16. | 28 | BURATTINI S, GREENLAND B W, CHAOOELL D, et al. Healable polymeric materials: a tutorial review[J]. Chemical Society Reviews, 2010, 39(6): 1973-1985. | 29 | WANG L, URETA C, SATO T, et al. Self-healing superhydrophobic materials showing quick damage recovery and long-term durability[J]. Langmuir, 2017, 33(38): 9972-9978. | 30 | ZHANG L B, TANG B, WU J B, et al. Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating[J]. Advanced Materials, 2015, 27(33): 4889-4894. | 31 | LI Y, LI B, ZHAO X, et al. Totally waterborne, nonfluorinated, mechanically robust and self-healing superhydrophobic coatings for actual anti-icing[J]. ACS Applied Materials & Interfaces, 2018, 10(45): 39391-39399. | 32 | LI Y, CHEN S S, WU M C, et al. All spraying processes for the fabrication of robust, self-healing, superhydrophobic coatings[J]. Advanced Materials, 2014, 26(26): 3344-3349. | 33 | YIN X, WANG D, BO Y, et al. Rabbit hair regenerative superhydrophobicity[J]. RSC Advances, 2013, 4(7): 3611-3614. | 34 | SAM E K, SAM D K, LV X M, et al. Recent development in the fabrication of self-healing superhydrophobic surfaces[J]. Chemical Engineering Journal, 2019, 373: 531-546. | 35 | WU G, HU C, CUI J, et al. Concurrent superhydrophobicity and thermal energy-storage of microcapsule with superior thermal stability and durability[J]. ACS Sustainable Chemistry & Engineering, 2017, 5: 7759-7767. | 36 | ZHANG CH J, LIANG F H, ZHANG W, et al. Constructing mechanochemical durable and self-healing superhydrophobic surfaces[J]. ACS Omega, 2019, 5(2):986-994. | 37 | RAO Q Q, CHEN K L, WANG C X, et al. Facile preparation of self-healing waterborne superhydrophobic coatings based on fluoroalkyl silane-loaded microcapsules[J]. RSC Advances, 2016, 6: 53949-53954. | 38 | LIU Y H, LIU Z L, LIU Y P, et al. One-step modification of fabrics with bioinspired polydopamine@octadecylamine nanocapsules for robust and healable self-cleaning performance[J]. Small, 2014, 11(4): 426-431. | 39 | MANNA U, LYNN D M. Restoration of superhydrophobicity in crushed polymer films by treatment with water: self-healing and recovery of damaged topographic features aided by an unlikely source[J]. Advanced Materials, 2013, 25(36): 5104-5108. | 40 | TIAN X C, SHAW S, LIND K R, et al. Thermal processing of silicones for green, scalable, and healable superhydrophobic coatings[J]. Advanced Materials, 2016, 28(19): 3677-3682. | 41 | CHEN K L, ZHOU S X, WU L M, et al. Facile fabrication of self-repairing superhydrophobic coatings[J]. Chemical Communications, 2014, 50: 11891-11894. | 42 | 周莹, 肖利吉, 姚丽, 等. 自修复型超疏水材料研究进展[J]. 材料导报, 2019, 33(7): 159-167. | 42 | ZHOU Ying, XIAO Liji, YAO Li, et al. Research progress in self-healing superhydrophobic surfaces[J]. Materials Reports, 2019, 33(7): 159-167. | 43 | LYU T, CHENG Z J, ZHANG E S, et al. Self-restoration of superhydrophobicity on shape semory polymer arrays with both crushed microstructure and damaged surface chemistry[J]. Small, 2017, 13(4): 1503402. | 44 | GUO X J, XUE C H, SATHASIVAM S, et al. Fabrication of robust superhydrophobic surfaces via aerosol-assisted CVD and thermo-triggered healing of superhydrophobicity by recovery of roughness structures[J]. Journal of Materials Chemistry A, 2019, 7: 17604-17612. | 45 | BAI N, LI Q, DONG H, et al. A versatile approach for preparing self-recovering superhydrophobic coatings[J]. Chemical Engineering Journal, 2016, 293: 75-81. | 46 | LI Y, GE B, MEN X H, et al. A facile and fast approach to mechanically stable and rapid self-healing waterproof fabrics[J]. Composite Science and Technology, 2016, 125: 55-61. | 47 | RAMAKRISHNA S, SANTHOSH K K S, MATHEW D, et al. A robust, melting class bulk superhydrophobic material with heat-healing and self-cleaning properties[J]. Scientific Reports, 2015, 5: 18510-18520. | 48 | WANG F J, LEI S, QU J F, et al. Superhydrophobic surfaces with excellent mechanical durability and easy repairability[J]. Applied Surface Science, 2013, 276(3): 397-400. | 49 | LI Y, REN M, LYU P, et al. Robust and flexible bulk superhydrophobic material from silicone rubber/silica gel prepared by thiol-ene photopolymerization[J]. Journal of Materials Chemistry A, 2019, 7: 7242-7255. | 50 | ASSEM E, PIETER V, SHAKER A M. Meguid multifunctional silica-silicone nanocomposite with regenerative superhydrophobic capabilities[J]. ACS Applied Materials & Interfaces, 2019, 11: 42827-42837. | 51 | MIZUKI T, SADAKI S, MASANOBU N. Durable and flexible superhydrophobic materials: abrasion/scratching/slicing/droplet impacting/bending/twisting-tolerant composite with porcupinefish-like structure[J]. ACS Applied Materials & Interfaces, 2019, 11: 32381-32389. | 52 | KEVIN G, GOLOVIN B, MATHEW M M, et al. Designing self-healing superhydrophobic surfaces with exceptional mechanical durability[J]. ACS Applied Materials & Interfaces, 2017, 9(12): 11212-11223. |
|