化工进展 ›› 2021, Vol. 40 ›› Issue (8): 4278-4289.DOI: 10.16085/j.issn.1000-6613.2020-1849
秦煜1,2(), 唐元鑫1, 阮鹏臻1, 王威娜1(), 陈斌2
收稿日期:
2020-09-14
出版日期:
2021-08-05
发布日期:
2021-08-12
通讯作者:
王威娜
作者简介:
秦煜(1983—),男,博士,高级工程师,博士生导师,研究方向为智能材料结构等。E-mail:基金资助:
QIN Yu1,2(), TANG Yuanxin1, RUAN Pengzhen1, WANG Weina1(), CHEN Bin2
Received:
2020-09-14
Online:
2021-08-05
Published:
2021-08-12
Contact:
WANG Weina
摘要:
碳纳米管水泥基复合材料具有多尺度的非均一性,其宏观尺度的性能是其各级低阶尺度本质的偶联映射,故而多尺度分析碳纳米管水泥基复合材料性能机理至关重要。本文从宏观、细观、微观和纳观四个尺度,综述了碳纳米管水泥基复合材料压阻效应的多尺度试验、机理和模型等方面的研究进展。总结了现有研究在骨料、孔隙结构、界面过渡区、外部环境因素以及理论模型等方面存在的局限或不足,并提出微纳观结构、理论模型等方面需进一步研究。
中图分类号:
秦煜, 唐元鑫, 阮鹏臻, 王威娜, 陈斌. 碳纳米管水泥基复合材料压阻效应的多尺度研究进展[J]. 化工进展, 2021, 40(8): 4278-4289.
QIN Yu, TANG Yuanxin, RUAN Pengzhen, WANG Weina, CHEN Bin. Progress in multi-scale study on piezoresistive effect of carbon nanotube cement-based composite[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4278-4289.
1 | AL-SALEH M H, SUNDARARAJ U. Electromagnetic interference shielding mechanisms of CNT/polymer composites[J]. Carbon, 2009, 47(7): 1738-1746. |
2 | WANG B, GUO Z, HAN Y, et al. Electromagnetic wave absorbing properties of multi-walled carbon nanotube/cement composites[J]. Construction & Building Materials, 2013, 46: 98-103. |
3 | SINGH A P, GUPTA B K, MISHRA M, et al. Multiwalled carbon nanotube/cement composites with exceptional electromagnetic interference shielding properties[J]. Carbon, 2013, 56: 86-96. |
4 | LI H, ZHANG Q, XIAO H. Self-deicing road system with a CNFP high-efficiency thermal source and MWCNT/cement-based high-thermal conductive composites[J]. Cold Regions Science and Technology, 2013, 86: 22-35. |
5 | 李小霞, 常媛. 新型水泥基复合材料的制备及应力对其力学和热电性能的影响[J]. 硅酸盐通报, 2020, 39(5): 1478-1482. |
LI Xiaoxia, CHANG Yuan. Preparation of new cement-based composites and effects of stress on its mechanical and thermoelectric properties[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(5): 1478-1482. | |
6 | QIN J J, YAO W, ZUO J Q. Temperature sensitive properties of hybrid carbon nanotube/carbon fiber cement-based materials[J]. Key Engineering Materials, 2013, 539: 89-93. |
7 | 欧进萍, 关新春, 李惠. 应力自感知水泥基复合材料及其传感器的研究进展[J]. 复合材料学报, 2006, 23(4): 1-8. |
Jinping OU, GUAN Xinchun, LI Hui. State-of-the-art of stress-sensing cement composite material and sensors[J]. Acta Materiae Compositae Sinica, 2006, 23(4): 1-8. | |
8 | 王彩辉, 孙伟, 蒋金洋, 等. 水泥基复合材料在多尺度方面的研究进展[J]. 硅酸盐学报, 2011, 39(4): 726-738. |
WANG Caihui, SUN Wei, JIANG Jinyang, et al. Development on cement-based composite materials in multi-scale[J]. Journal of the Chinese Ceramic Society, 2011, 39(4): 726-738. | |
9 | SOBOLKINA A, MECHTCHERINE V, KHAVRUS V, et al. Dispersion of carbon nanotubes and its influence on the mechanical properties of the cement matrix[J]. Cement and Concrete Composites, 2012, 34(10): 1104-1113. |
10 | VAISMAN L, WAGNER H D, MAROM G. The role of surfactants in dispersion of carbon nanotubes[J]. Advances in Colloid and Interface Science, 2006,128/129/130: 37-46. |
11 | VAISMAN L, MAROM G, WAGNER H D. Dispersions of surface-modified carbon nanotubes in water-soluble and water-insoluble polymers[J]. Advanced Functional Materials, 2006, 16(3): 357-363. |
12 | 武玺旺, 肖建中, 夏风, 等. 碳纳米管的分散方法与分散机理[J]. 材料导报, 2011, 25(9): 16-19. |
WU Xiwang, XIAO Jianzhong, XIA Feng, et al. Dispersion methods and dispersion mechanism of carbon nanotubes[J]. Materials Review, 2011, 25(9): 16-19. | |
13 | 施韬, 朱敏, 李泽鑫, 等. 碳纳米管改性水泥基复合材料的研究进展[J]. 复合材料学报, 2018, 35(5): 1033-1049. |
SHI Tao, ZHU Min, LI Zexin, et al. Review of research progress on carbon nanotubes modified cementitious composites[J]. Acta Materiae Compositae Sinica, 2018, 35(5): 1033-1049. | |
14 | 朱平, 邓广辉, 邵旭东. 碳纳米管在水泥基复合材料中的分散方法研究进展[J]. 材料导报, 2018, 32(1): 149-158. |
ZHU Ping, DENG Guanghui, SHAO Xudong. Review on dispersion methods of carbon nanotubes in cement based composites[J]. Materials Review, 2018, 32(1): 149-158. | |
15 | PIERARD N, FONSECA A, KONYA Z, et al. Production of short carbon nanotubes with open tips by ball milling[J]. Chemical Physics Letters, 2001, 335(1/2): 1-8. |
16 | SANDLER J, SHAFFER M S P, PRASSE T, et al. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties[J]. Polymer, 1999, 40(21): 5967-5971. |
17 | CHENG Q, DEBNATH S, GREGAN E, et al. Ultrasound-assisted SWNTs dispersion: effects of sonication parameters and solvent properties[J]. The Journal of Physical Chemistry C, 2010, 114(19): 8821-8827. |
18 | 马雪平. 碳纳米管水泥基复合材料压敏性能研究[D]. 济南: 山东大学, 2013. |
MA Xueping. Piezoresistivity of carbon nanotubes-cement composite[D]. Jinan: Shandong University, 2013. | |
19 | DATSYUK V, KALYVA M, PAPAGELIS K, et al. Chemical oxidation of multiwalled carbon nanotubes[J]. Carbon, 2008,46(6): 833-840. |
20 | 张姣龙, 朱洪波, 柳献, 等. 碳纳米管在水泥基复合材料中的分散性研究[J]. 武汉理工大学学报, 2012, 34(5): 6-9. |
ZHANG Jiaolong, ZHU Hongbo, LIU Xian, et al. Research on dispersion of carbon nano tubes in cement based composite[J]. Journal of Wuhan University of Technology, 2012, 34(5): 6-9. | |
21 | LI Q, MA Y, MAO C, et al. Grafting modification and structural degradation of multi-walled carbon nanotubes under the effect of ultrasonics sonochemistry[J]. Ultrasonics-Sonochemistry, 2009, 16(6): 752-757. |
22 | YU J R, GROSSIORD N, KONING C E, et al. Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution[J]. Carbon, 2007, 45(3): 618-623. |
23 | 罗健林, 段忠东, 赵铁军. 纳米碳管水泥基复合材料的电阻性能[J]. 哈尔滨工业大学学报, 2010, 42(8): 1237-1241. |
LUO Jianlin, DUAN Zhongdong, ZHAO Tiejun. Properties of electrical resistivity of fiber-reinforced cement composites with multi-walled carbon nanotubes[J]. Journal of Harbin Institute of Technology, 2010, 42(8): 1237-1241. | |
24 | 韩瑜. 碳纳米管的分散性及其水泥基复合材料力学性能[D]. 大连:大连理工大学, 2013. |
HAN Yu. Dispersion of carbon nanotubes and the mechanical properties of carbon nanotubes reinforced cement-based composites [D]. Dalian: Dalian University of Technology, 2013. | |
25 | ZHAO G, LIU K, LIN S, et al. Application of a carbon nanotube modified electrode in anodic stripping voltammetry for determination of trace amounts of 6-benzylaminopurine[J]. Microchimica Acta, 2003, 143(4): 255-260. |
26 | JAROLIM T, LABAJ M, HELA R, et al. Carbon nanotubes in cementitious composites: dispersion, implementation, and influence on mechanical characteristics[J]. Advances in Materials Science and Engineering, 2016, 2016: 1-6. |
27 | 尚旭, 景希玮, 徐健, 等. 不同分子量聚乙烯吡咯烷酮对多壁碳纳米管分散性能的影响[J]. 华东理工大学学报(自然科学版), 2019, 45(6): 883-890. |
SHANG Xu, JING Xiwei, XU Jian, et al. Influence of polyvinylpyrrolidone with different molecular weights on the dispersion of multiwalled carbon nanotubes[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2019, 45(6): 883-890. | |
28 | KONSTA-GDOUTOS M S, METAXA Z S, SHAH S P. Highly dispersed carbon nanotube reinforced cement based materials[J]. Cement and Concrete Research, 2010, 40(7): 1052-1059. |
29 | ZOU B, CHEN S J, KORAYEM A H, et al. Effect of ultrasonication energy on engineering properties of carbon nanotube reinforced cement pastes[J]. Carbon, 2015, 85: 212-220. |
30 | METAXA Z S, KONSTA-GDOUTOS M S, SHAH S P. Carbon nanofiber cementitious composites: effect of debulking procedure on dispersion and reinforcing efficiency[J]. Cement and Concrete Composites, 2013, 36: 25-32. |
31 | CONSTANTINIDES G, ULM F. The effect of two types of C-S-H on the elasticity of cement-based materials: results from nanoindentation and micromechanical modeling[J]. Cement and Concrete Research, 2004, 34(1): 67-80. |
32 | KIM H K, PARK I S, LEE H K. Improved piezoresistive sensitivity and stability of CNT/cement mortar composites with low water-binder ratio[J]. Composite Structures, 2014, 116: 713-719. |
33 | FANECA G, SEGURA I, TORRENTS J M, et al. Development of conductive cementitious materials using recycled carbon fibres[J]. Cement and Concrete Composites, 2018, 92: 135-144. |
34 | 李庚英. 碳纳米管水泥基材料的力学性能及机敏性能[D]. 上海:同济大学, 2006. |
LI Gengying. Mechanical properties and alertness of carbon nanotubes cement-based materials[D]. Shanghai: Tongji University, 2006. | |
35 | MONTEIRO A O, CACHIM P B, COSTA P M F J. Self-sensing piezoresistive cement composite loaded with carbon black particles[J]. Cement and Concrete Composites, 2017, 81: 59-65. |
36 | 刘小艳, 许悦, 刘磊. 碳纳米管/水泥基复合材料导电机理的研究[J]. 三峡大学学报(自然科学版), 2013, 35(6): 71-73. |
LIU Xiaoyan, XU Yue, LIU Lei. Study of conductive mechanism of carbon nanotubes reinforced cement paste materials[J]. Journal of China Three Gorges University (Natural Sciences), 2013, 35(6): 71-73. | |
37 | 饶瑞, 陈洋臣, 刘春晖, 等. 电流及电压对钢纤维石墨导电混凝土电阻率的影响[J]. 混凝土与水泥制品, 2017(2): 50-54. |
RAO Rui, CHEN Yangchen, LIU Chunhui, et al. Influence of current and voltage on resistivity of steel fiber graphite electric conductive concrete[J]. China Concrete and Cement Products, 2017(2): 50-54. | |
38 | 姜海峰. 自感知碳纳米管水泥基复合材料及其在交通探测中的应用[D]. 哈尔滨:哈尔滨工业大学, 2012. |
JIANG Haifeng. Self-sensing carbon nanotube cement-based composites and their application in traffic detection[D]. Harbin: Harbin Institute of Technology, 2012. | |
39 | ZHANG L, HAN B, OUYANG J, et al. Multifunctionality of cement based composite with electrostatic self-assembled CNT/NCB composite filler[J]. Archives of Civil and Mechanical Engineering, 2017, 17(2): 354-364. |
40 | ZHANG L, DING S, DONG S, et al. Piezoresistivity, mechanisms and model of cement-based materials with CNT/NCB composite fillers[J]. Materials Research Express, 2017, 4(12): 125704. |
41 | PARVANEH V, KHIABANI S H. Mechanical and piezoresistive properties of self-sensing smart concretes reinforced by carbon nanotubes[J]. Mechanics of Advanced Materials and Structures, 2019, 26(11): 993-1000. |
42 | 罗健林, 段忠东. 纳米碳管/水泥基复合材料的阻尼及力学性能[J]. 北京化工大学学报(自然科学版), 2008, 35(6): 63-66. |
LUO Jianlin, DUAN Zhongdong. Damping capacity and flexural strength of multi-walled carbon nanotube/cement composites[J]. Journal of Beijing University of Chemical. Technology (Natural Science Edition), 2008, 35(6): 63-66. | |
43 | WOO N I, HAMID S, HK L. Percolation threshold and piezoresistive response of multi-wall carbon nanotube/cement composites[J]. Smart Struct. Syst., 2016, 18(2): 217-231. |
44 | EFTEKHARI M, MOHAMMADI S. Multiscale dynamic fracture behavior of the carbon nanotube reinforced concrete under impact loading[J]. International Journal of Impact Engineering, 2016, 87: 55-64. |
45 | HAN B, YU X, OU J. Effect of water content on the piezoresistivity of MWNT/cement composites[J]. Journal of Materials Science, 2010, 45(14): 3714-3719. |
46 | SONG C, CHOI S. Moisture-dependent piezoresistive responses of CNT-embedded cementitious composites[J]. Composite Structures, 2017, 170: 103-110. |
47 | AZHARI F, BANTHIA N. Cement-based sensors with carbon fibers and carbon nanotubes for piezoresistive sensing[J]. Cement and Concrete Composites, 2012, 34(7): 866-873. |
48 | 刘巧玲. 碳纳米管增强水泥基复合材料多尺度性能及机理研究[D]. 南京:东南大学, 2015. |
LIU Qiaoling. Multi-scale properties and mechanism of carbon nanotubes/cement nanocomposites[D]. Nanjing: Southeast University, 2015. | |
49 | KONSTA-GDOUTOS M S, METAXA Z S, SHAH S P. Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites[J]. Cement & concrete composites, 2010, 32(2): 110-115. |
50 | LI G Y, WANG P M, ZHAO X. Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes[J]. Carbon, 2005, 43(6): 1239-1245. |
51 | HU Y, LUO D, LI P, et al. Fracture toughness enhancement of cement paste with multi-walled carbon nanotubes[J]. Construction & Building Materials, 2014, 70: 332-338. |
52 | LI G Y, WANG P M, ZHAO X. Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites[J]. Cement and Concrete Composites, 2007, 29(5): 377-382. |
53 | MENDOZA REALES O A, DIAS TOLEDO FILHO R. A review on the chemical, mechanical and microstructural characterization of carbon nanotubes-cement based composites[J]. Construction and Building Materials, 2017, 154: 697-710. |
54 | AMIN M S, EL-GAMAL S M A, HASHEM F S. Fire resistance and mechanical properties of carbon nanotubes-clay bricks wastes (Homra) composites cement[J]. Construction and Building Materials, 2015, 98: 237-249. |
55 | R S, G D, S D M. Physical properties of carbon nanotubes[M]. London: Imperial College Press, 1998. |
56 | LIU L, JAYANTHI C S, TANG M, et al. Controllable reversibility of an sp2 to sp3 transition of a single wall nanotube under the manipulation of an AFM tip: a nanoscale electromechanical switch?[J]. Phys. Rev. Lett., 2000, 84(21): 4950-4953. |
57 | ZHANG L, DING S, LI L, et al. Effect of characteristics of assembly unit of CNT/NCB composite fillers on properties of smart cement-based materials[J]. Composites Part A: Applied Science and Manufacturing, 2018, 109: 303-320. |
58 | KINLOCH I A, SUHR J, LOU J, et al. Composites with carbon nanotubes and graphene: an outlook[J]. Science, 2018, 362(6414): 547-553. |
59 | SÁEZ DE IBARRA Y, GAITERO J J, ERKIZIA E, et al. Atomic force microscopy and nanoindentation of cement pastes with nanotube dispersions[J]. Physica Status Solidi (A), 2006, 203(6): 1076-1081. |
60 | YU S, WANG X, XIANG H, et al. Superior piezoresistive strain sensing behaviors of carbon nanotubes in one-dimensional polymer fiber structure[J]. Carbon, 2018, 140: 1-9. |
61 | CUI H, YANG S, MEMON S A. Development of carbon nanotube modified cement paste with microencapsulated phase-change material for structural-functional integrated application[J]. Int. J. Mol. Sci., 2015, 16(4): 8027-8039. |
62 | 刘巧玲, 李汉彩, 彭玉娇, 等. 多壁碳纳米管增强水泥基复合材料的纳米力学性能[J]. 复合材料学报, 2019, 37(4): 952-961. |
LIU Qiaoling, LI Hancai, PENG Yujiao, et al. Nanomechanical properties of MWCNTs/cementitious composites[J]. Acta Mater. Compos. Sin., 2019, 37(4): 952-961. | |
63 | NOCHAIYA T, CHAIPANICH A. Behavior of multi-walled carbon nanotubes on the porosity and microstructure of cement-based materials[J]. Applied Surface Science, 2011, 257(6): 1941-1945. |
64 | SHKLOVSKII B I, EFROS A L. Electronic properties of doped semiconductors[M]. Berlin: Springer Science & Business Media, 2013. |
65 | HAN B, YU X, OU J. Multifunctional and smart carbon nanotube reinforced cement-based materials[M]. Berlin: Springer, 2011. |
66 | LEE S J, YOU I, ZI G, et al. Experimental investigation of the piezoresistive properties of cement composites with hybrid carbon fibers and nanotubes[J]. Sensors, 2017, 17(11): 2516. |
67 | HU N, KARUBE Y, YAN C, et al. Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor[J]. Acta Materialia, 2008, 56(13): 2929-2936. |
68 | LANDAUER R. Electrical conductivity in inhomogeneous media [C]// In American Institute of Physics Conference Proceedings, New York, 1978. |
69 | MCLACHLAN D S. Measurement and analysis of a model dual conductivity medium using a generalized effective medium theory[J]. Physica A: Statistical Mechanics and its Applications, 1989, 157(1): 188-191. |
70 | 罗健林. 碳纳米管水泥基复合材料制备及功能性能研究[D]. 哈尔滨:哈尔滨工业大学, 2009. |
LUO Jianlin. Fabrication and functional prorperties of multi-walled carbon nanotube/cement composites[D]. Harbin: Harbin Institute of Technology, 2009. | |
71 | 姚斌. 环境因素对纳米碳纤维混凝土压敏特性的影响[D]. 哈尔滨:哈尔滨工业大学, 2013. |
YAO Bin. Influence of environmental conditions on the piezoreresistive effect of carbon nanofiber concrete[D]. Harbin: Harbin Institute of Technology, 2013. | |
72 | 陆见广. 碳纤维智能混凝土梁的力电效应研究[D]. 南京:南京理工大学, 2007. |
LU Jianguang. Study on the electrodynamic effect of carbon fiber intelligent concrete beam[D]. Nanjing: Nanjing University of Science and Technology, 2007. | |
73 | LI C, THOSTENSON E T, CHOU T. Dominant role of tunneling resistance in the electrical conductivity of carbon nanotube-based composites[J]. Applied Physics Letters, 2007, 91(22): 223114. |
74 | HAN B, SUN S, DING S, et al. Review of nanocarbon-engineered multifunctional cementitious composites[J]. Composites Part A: Applied Science and Manufacturing, 2015, 70: 69-81. |
75 | BAO W S, MEGUID S A, ZHU Z H, et al. Tunneling resistance and its effect on the electrical conductivity of carbon nanotube nanocomposites[J]. Journal of Applied Physics, 2012, 111(9): 093726. |
76 | CHEN Pu-Woei, CHUNG D D L. Concrete reinforced with up to 0.2 vol% of short carbon fibres[J]. Composites, 1993, 24(1): 33-52. |
77 | WEN S, CHUNG D D L. Model of piezoresistivity in carbon fiber cement[J]. Cement and Concrete Research, 2006, 36(10): 1879-1885. |
78 | 王燕锋, 赵晓华, 李庚英. 干湿变化对多壁碳纳米管/水泥砂浆压阻效应的影响[J]. 材料导报, 2017, 31(24): 20-25. |
WANG Yanfeng, ZHAO Xiaohua, LI Gengying. Influence of dry/wet state variation on piezoresistivity of multi-walled carbon nanotube reinforced cement mortar[J]. Materials Review, 2017, 31(24): 20-25. | |
79 | GARCÍA-MACÍAS E, D'ALESSANDRO A, CASTRO-TRIGUERO R, et al. Micromechanics modeling of the uniaxial strain-sensing property of carbon nanotube cement-matrix composites for SHM applications[J]. Composite Structures, 2017, 163: 195-215. |
80 | GARCÍA-MACÍAS E, D'ALESSANDRO A, CASTRO-TRIGUERO R, et al. Micromechanics modeling of the electrical conductivity of carbon nanotube cement-matrix composites[J]. Composites Part B: Engineering, 2017, 108: 451-469. |
81 | 李建波, 林皋, 陈健云. 随机凹凸型骨料在混凝土细观数值模型中配置算法研究[J]. 大连理工大学学报, 2008(6): 869-874. |
LI Jianbo, LIN Gao, CHEN Jianyun. Numerical generation and efficient distribution for random shape aggregates in mesoscopic concrete model[J]. Journal of Dalian University of Technology, 2008(6): 869-874. | |
82 | WITTMANN F H, ROELFSTRA P E, SADOUKI H. Simulation and analysis of composite structures[J]. Materials Science and Engineering, 1985, 68(2): 239-248. |
83 | SANATI M, SANDWELL A, MOSTAGHIMI H, et al. Development of nanocomposite-based strain sensor with piezoelectric and piezoresistive properties[J]. Sensors, 2018, 18(11): 3789. |
84 | ALIAN A R, MEGUID S A. Multiscale modeling of the coupled electromechanical behavior of multifunctional nanocomposites[J]. Composite Structures, 2019, 208: 826-835. |
85 | BERHAN L, SASTRY A M. Modeling percolation in high-aspect-ratio fiber systems. I. Soft-core versus hard-core models[J]. Physical Review E: Statistical Nonlinear & Soft Matter Physics, 2007, 75(4): 041120. |
86 | WANG Z, YE X. A numerical investigation on piezoresistive behaviour of carbon nanotube/polymer composites: mechanism and optimizing principle[J]. Nanotechnology, 2013, 24(26): 265704. |
87 | LUHENG W, TIANHUAI D, PENG W. Influence of carbon black concentration on piezoresistivity for carbon-black-filled silicone rubber composite[J]. Carbon, 2009, 47(14): 3151-3157. |
88 | THEODOSIOU T C, SARAVANOS D A. Numerical investigation of mechanisms affecting the piezoresistive properties of CNT-doped polymers using multi-scale models[J]. Composites Science and Technology, 2010, 70(9): 1312-1320. |
[1] | 许友好, 王维, 鲁波娜, 徐惠, 何鸣元. 中国炼油创新技术MIP的开发策略及启示[J]. 化工进展, 2023, 42(9): 4465-4470. |
[2] | 张超, 杨鹏, 刘广林, 赵伟, 杨绪飞, 张伟, 宇波. 表面微结构对阵列微射流沸腾换热的影响[J]. 化工进展, 2023, 42(8): 4193-4203. |
[3] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[4] | 龚鹏程, 严群, 陈锦富, 温俊宇, 苏晓洁. 铁酸钴复合碳纳米管活化过硫酸盐降解铬黑T的性能及机理[J]. 化工进展, 2023, 42(7): 3572-3581. |
[5] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
[6] | 薛博, 杨婷婷, 王雪峰. 聚苯胺/碳纳米管气敏材料的研究进展[J]. 化工进展, 2023, 42(3): 1448-1456. |
[7] | 陈韶云, 周贤太, 纪红兵. 金属卟啉/碳纳米管仿生催化剂的制备及其在Baeyer-Villiger氧化反应中的催化机理[J]. 化工进展, 2023, 42(3): 1332-1340. |
[8] | 邱沫凡, 蒋琳, 刘荣正, 刘兵, 唐亚平, 刘马林. 气固流化床化学反应数值模拟中颗粒尺度模型研究进展[J]. 化工进展, 2023, 42(10): 5047-5058. |
[9] | 张辛亥, 赵思琛, 朱辉, 张首石, 王凯. 多种碳材料与碳酸钠复合后脱硫性能对比[J]. 化工进展, 2022, 41(S1): 424-435. |
[10] | 张爱京, 江胜娟, 周明正, 柴茂荣, 张劲. 纳米管壁数对氮掺杂碳纳米管氧还原反应活性的影响[J]. 化工进展, 2022, 41(4): 2038-2045. |
[11] | 周涛涛, 熊志波, 吴志根, 李尚. 膨胀石墨/石蜡复合相变材料的导电及发热特性[J]. 化工进展, 2022, 41(2): 892-900. |
[12] | 慕诗芸, 刘凯, 吕孝琦, 矫义来, 李鑫钢, 李洪, 范晓雷, 高鑫. 微波协同氧化锆@碳纳米管强化果糖制5-羟甲基糠醛[J]. 化工进展, 2022, 41(11): 5858-5869. |
[13] | 王英, 冉进业, 张今, 杨鑫, 张浩. 基于深度时间序列特征融合的西安市2015—2020年供暖季雾霾重污染过程预警[J]. 化工进展, 2022, 41(10): 5685-5694. |
[14] | 张燕, 王淼, 赵佳辉, 冯宇, 米杰. 氮掺杂石墨烯/碳纳米管/无定形炭复合材料制备及其电化学性能[J]. 化工进展, 2022, 41(10): 5501-5509. |
[15] | 孟德超, 马紫峰, 李林森. 锂离子电池介尺度电化学反应非均匀性[J]. 化工进展, 2021, 40(9): 4869-4881. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |