化工进展 ›› 2021, Vol. 40 ›› Issue (6): 3466-3479.DOI: 10.16085/j.issn.1000-6613.2020-1422
收稿日期:
2020-07-23
修回日期:
2020-10-29
出版日期:
2021-06-06
发布日期:
2021-06-22
通讯作者:
武海霞
作者简介:
林少华(1975—),男,教授,硕士生导师,研究方向为水的高级氧化处理技术。E-mail:基金资助:
LIN Shaohua1(), WU Haixia2(), GAO Liping1, YU Yiping1
Received:
2020-07-23
Revised:
2020-10-29
Online:
2021-06-06
Published:
2021-06-22
Contact:
WU Haixia
摘要:
碳纳米管(carbon nanotube, CNT)具有高比表面积、高吸附能力、优良的导电性和化学稳定性等,但其在水中存在分散性差和催化能力低等问题。为了提高其在废水处理中性能,需要对CNT进行改性,制备复合材料。本文总结了CNT表面改性和复合材料制备方法,论述了改性CNT及其复合材料在电化学氧化、电化学还原、电化学过滤、光催化和膜分离等处理技术中的应用研究进展,并就未来研究方向进行了展望。指出了CNT在未来废水处理方面应用的研究重点包括:①设计经济、方便、温和的改性路线,继续寻求获得新型高效改性CNT及其复合材料,并兼顾稳定性;②开发基于改性CNT及其复合材料特性的废水处理新装置和反应工艺;③关注因改性CNT及其复合材料流失引起的生物、生态效应。
中图分类号:
林少华, 武海霞, 高莉苹, 俞乙平. 改性碳纳米管及其复合材料在废水处理中的应用现状及展望[J]. 化工进展, 2021, 40(6): 3466-3479.
LIN Shaohua, WU Haixia, GAO Liping, YU Yiping. Current status and future prospects of modified carbon nanotube and its composite materials application for wastewater treatment[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3466-3479.
1 | 张巍松, 刘玉婷, 吴刚平. 基于电化学阳极氧化的多壁碳纳米管表面改性[J]. 新型炭材料, 2020, 35(2): 155-164. |
ZHANG Weisong, LIU Yuting, WU Gangping. Surface modification of multiwall carbon nanotubes by electrochemical anodic oxidation[J]. New Carbon Materials, 2020, 35(2): 155-164. | |
2 | JAME S A, ZHOU Z. Electrochemical carbon nanotube filters for water and wastewater treatment[J]. Nanotechnology Reviews, 2016, 5(1): 41-50. |
3 | POKHREL L R, ETTORE N, JACOBS Z L, et al. Novel carbon nanotube (CNT)-based ultrasensitive sensors for trace mercury() detection in water: a review[J]. Science of the Total Environment, 2017,574: 1379-1388. |
4 | LIU H, VAJPAYEE A, VECITIS C D. Bismuth-doped tin oxide-coated carbon nanotube network: improved anode stability and efficiency for flow-through organic electrooxidation[J]. ACS Applied Material Interface, 2013, 5(20): 10054-10066. |
5 | 邱家乐, 徐豆豆, 赵真凤, 等. 碳纳米管的功能化修饰及应用研究进展[J]. 材料导报, 2015, 29(5): 20-24. |
QIU Jiale, XU Doudou, ZHAO Zhenfeng, et al. The status of functionalizing carbon nanotubes and relevant applications[J]. Materials Reviews, 2015, 29(5): 20-24. | |
6 | ATIF M, AFZAAL I, NASEER H, et al. Review—surface modification of carbon nanotubes: a tool to control electrochemical performance[J]. ECS Journal of Solid State Science and Technology, 2020, 9(4): 041009. |
7 | GEORGAKILAS V, KORDATOS K, PRATO M, et al. Organic functionalization of carbon nanotubes[J]. Journal of American Chemical Society, 2002, 124(5): 760-761. |
8 | EDER D. Carbon nanotube-inorganic hybrids[J]. Chemical Reviews, 2010, 110(3): 1348-1385. |
9 | XUE Y D, ZHENG S L, SUN Z, et al. Alkaline electrochemical advanced oxidation process for chromium oxidation at graphitized multi-walled carbon nanotubes[J]. Chemosphere, 2017, 183: 156-163. |
10 | XIA Y, SHANG H, ZHANG Q G, et al. Electrogeneration of hydrogen peroxide using phosphorus-doped carbon nanotubes gas diffusion electrodes and its application in electro-Fenton[J]. Journal of Electroanalytical Chemistry, 2019, 840: 400-408. |
11 | WEPASNICK K A, SMITH B A, SCHROTE K E, et al. Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments[J]. Carbon, 2011, 49(1): 24-36. |
12 | 马建春, 张军, 杜鹏, 等. 功能化改性多壁碳纳米管的制备方法研究[J]. 山西化工, 2015, 35(2): 12-14. |
MA Jianchun, ZHANG Jun, DU Peng, et al. Research on the preparation methods of functionalized multi-walled carbon nanotubes[J]. Shanxi Chemical Industry, 2015, 35(2): 12-14. | |
13 | SADEGHI M, MEHDINEJAD M H, MENGELIZADEH N, et al. Degradation of diclofenac by heterogeneous electro-Fenton process using magnetic single-walled carbon nanotubes as a catalyst[J]. Journal of Water Process Engineering, 2019, 31: 100852. |
14 | LI X N, ZHAO H M, QUAN X, et al. Adsorption of ionizable organic contaminants on multi-walled carbon nanotubes with different oxygen contents[J]. Journal of Hazardous Materials, 2011, 186(1): 407-415. |
15 | LING X L, WEI Y Z, ZOU L M, et al. Preparation and characterization of hydroxylated multi-walled carbon nanotubes[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 421: 9-15. |
16 | MISHRA P, JAIN R. Electrochemical deposition of MWCNT-MnO2/PPy nano-composite application for microbial fuel cells[J]. International Journal of Hydrogen Energy, 2016, 41(47): 22394-22405. |
17 | 杨爱丽, 武俊红, 张业新. 臭氧氧化改性碳纳米管对铀的吸附性能[J]. 核化学与放射化学, 2018, 40(4): 267-272. |
YANG Aili, WU Junhong, ZHANG Yexin. Adsorption performance of carbon nanotube oxidized by ozone for uranium[J]. Journal of Nuclear and Radiochemistry, 2018, 40(4): 267-272. | |
18 | GAO G D, PAN M L, VECITIS C D. Effect of the oxidation approach on carbon nanotube surface functional groups and electrooxidative filtration performance[J]. Journal of Materials Chemistry A, 2015, 3(14): 7575-7582. |
19 | WANG J, CHEN S, QUAN X, et al. Fluorine-doped carbon nanotubes as an efficient metal-free catalyst for destruction of organic pollutants in catalytic ozonation[J]. Chemosphere, 2018, 190: 135-143. |
20 | DUAN W Y, DUDCHENKO A, MENDE E, et al. Electrochemical mineral scale prevention and removal on electrically conducting carbon nanotube-polyamide reverse osmosis membranes[J]. Environmental Science: Processes & Impacts, 2014, 16(6): 1300-1308. |
21 | PAJOOTAN E, ARAMI M, RAHIMDOKHT M. Application of carbon nanotubes coated electrodes and immobilized TiO2 for dye degradation in a continuous photocatalytic-electro-Fenton process[J]. Industrial & Engineering Chemistry Research, 2014, 53: 16261-16269. |
22 | WU Y F, GAN L, ZHANG S P, et al. Carbon-nanotube-doped Pd-Ni bimetallic three-dimensional electrode for electrocatalytic hydrodechlorination of 4-chlorophenol: enhanced activity and stability[J]. Journal of Hazardous Materials, 2018, 356: 17-25. |
23 | ZOU Y J, XIANG C L, YANG L N, et al. A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material[J]. International Journal of Hydrogen Energy, 2008, 33(18): 4856-4862. |
24 | CAO M J, ZHANG Y, ZHANG B K, et al. The preparation of a modified PVDF hollow fiber membrane by coating with multiwalled carbon nanotubes for high antifouling performance[J]. RSC Advances, 2020, 10(4): 1848-1857. |
25 | SANG Y, WANG B, WANG Q, et al. Insights into the electrocatalysis of nitrobenzene using chemically-modified carbon nanotube electrodes[J]. Scientific Reports, 2014, 4: 6321. |
26 | LI F, PENG X, LIU Y B, et al. A chloride-radical-mediated electrochemical filtration system for rapid and effective transformation of ammonia to nitrogen[J]. Chemosphere, 2019, 229: 383-391. |
27 | LIU Y B, LIU F Q, DING N, et al. Boosting Cr(Ⅵ) detoxification and sequestration efficiency with carbon nanotube electrochemical filter functionalized with nanoscale polyaniline: performance and mechanism[J]. Science of the Total Environment, 2019, 695: 133926. |
28 | MAJEED S, FIERRO D, BUHR K, et al. Multi-walled carbon nanotubes (MWCNTs) mixed polyacrylonitrile (PAN) ultrafiltration membranes[J]. Journal of Membrane Science, 2012, 403/404: 101-109. |
29 | MAHDAVI M R, DELNAVAZ M, VATANPOUR V, et al. Effect of blending polypyrrole coated multiwalled carbon nanotube on desalination performance and antifouling property of thin film nanocomposite nanofiltration membranes[J]. Separation and Purification Technology, 2017, 184: 119-127. |
30 | ZHU Y, XIE W, GAO S, et al. Single-walled carbon nanotube film supported nanofiltration membrane with a nearly 10nm thick polyamide selective layer for high-flux and high-rejection desalination[J]. Small, 2016, 12(36): 5034-5041. |
31 | HOSSEINI M G, SEFIDI P Y, MERT A M, et al. Investigation of solar-induced photoelectrochemical water splitting and photocatalytic dye removal activities of camphor sulfonic acid doped polyaniline-WO3-MWCNT ternary nanocomposite[J]. Journal of Materials Science & Technology, 2020, 38: 7-18. |
32 | 吴征帅, 余胜, 廖运文, 等. 多杂环改性碳纳米管的合成及对水中铅离子的吸附[J]. 西华师范大学学报(自然科学版), 2019, 40(3): 245-250. |
WU Zhengshuai, YU Sheng, LIAO Yunwen, et al. Synthesis of multi-heterocyclic modified carbon nanotubes and its adsorption of lead ions in water[J]. Journal of China West Normal University (Natural Sciences Edition), 2019, 40(3): 245-250. | |
33 | 汲广云, 郭明, 杨兴, 等. 巯基硅烷改性多壁碳纳米管的合成及其对Cd2+的吸附性能研究[J]. 环境科学学报, 2017, 37( 6): 2171-2180. |
JI Guangyun, GUO Ming, YANG Xing, et al. Synthesis of sulphydryl silane-modified multiwall carbon nanotubes and its cadmium adsorption capacity[J]. Acta Scientiae Circumstantiae, 2017, 37(6): 2171-2180. | |
34 | DELPEUX-OULDRIANE S, SZOSTAK K, FRACKOWIAK E, et al. Annealing of template nanotubes to well-graphitized multi-walled carbon nanotubes[J]. Carbon, 2006, 44(4): 814-818. |
35 | HAGHIGHAT N, VATANPOUR V. Fouling decline and retention increase of polyvinyl chloride nanofiltration membranes blended by polypyrrole functionalized multiwalled carbon nanotubes[J]. Materials Today Communications, 2020, 23: 100851. |
36 | GHASEMI M, WAN DAUD W R, HASSAN S H A, et al. Carbon nanotube/polypyrrole nanocomposite as a novel cathode catalyst and proper alternative for Pt in microbial fuel cell[J]. International Journal of Hydrogen Energy, 2016, 41(8): 4872-4878. |
37 | 王赛, 谢磊, 黄欣嘉. 环糊精改性碳纳米管对铀的吸附性能[J]. 科学技术与工程, 2017, 17(26): 139-145. |
WANG Sai, XIE Lei, HUANG Xinjia. Removal of uranium by cyclodextrin modified carbon nanoutubes[J]. Science Technology & Engineering, 2017, 17(26): 139-145. | |
38 | GAO G, VECITIS C D. Electrochemical carbon nanotube filter oxidative performance as a function of surface chemistry[J]. Environmental Science & Technology, 2011, 45(22): 9726-9734. |
39 | ZHANG Y M, CHEN Z, ZHOU L C, et al. Efficient electrochemical degradation of tetrabromobisphenol A using MnO2/MWCNT composites modified Ni foam as cathode: kinetic analysis, mechanism and degradation pathway[J]. Journal of Hazardous Materials, 2019, 369: 770-779. |
40 | WANG C H, WU H, QU F S, et al. Preparation and properties of polyvinyl chloride ultrafiltration membranes blended with functionalized multi-walled carbon nanotubes and MWCNTs/Fe3O4 hybrids[J]. Journal of Applied Polymer Science, 2016, 133(20): 43417. |
41 | NAWAZ M, SHAHZAD A, TAHIR K, et al. Photo-Fenton reaction for the degradation of sulfamethoxazole using a multi-walled carbon nanotube-NiFe2O4 composite[J]. Chemical Engineering Journal, 2020, 382: 123053. |
42 | GHASEMI S, KARAMI H, KHANEZAR H. Hydrothermal synthesis of lead dioxide/multiwall carbon nanotube nanocomposite and its application in removal of some organic water pollutants[J]. Journal of Materials Science, 2014, 49(3): 1014-1024. |
43 | KHUSNUN N F, JALIL A A, TRIWAHYONO S, et al. Interaction between copper and carbon nanotubes triggers their mutual role in the enhanced photodegradation of p-chloroaniline[J]. Physical Chemistry Chemical Physics, 2016, 18(17): 12323-12331. |
44 | LIU F Q, LIU Y B, SHEN C S, et al. One-step phosphite removal by an electroactive CNT filter functionalized with TiO2/CeOxnanocomposites[J]. Science of the Total Environment, 2020, 710: 135514. |
45 | ZHAO D, LI A C, WU M M, et al. Ag3PO4/carbon nanotubes/Ni film electrodes: photoelectrocatalytic properties and mechanism of Rhodamine B degradation under an applied negative bias[J]. Reaction Kinetics Mechanisms and Catalysis, 2018, 124(1): 347-362. |
46 | YANEZ H J E, WANG Z, LEGE S, et al. Application and characterization of electroactive membranes based on carbon nanotubes and zerovalent iron nanoparticles[J]. Water Research, 2017, 108: 78-85. |
47 | HU X, YU Y, SUN Z R. Preparation and characterization of cerium-doped multiwalled carbon nanotubes electrode for the electrochemical degradation of low-concentration ceftazidime in aqueous solutions[J]. Electrochimica Acta, 2016, 199: 80-91. |
48 | YANG S Y, VECITIS C D, PARK H. Electrocatalytic water treatment using carbon nanotube filters modified with metal oxides[J]. Environmental Science and Pollution Research, 2019, 26(2): 1036-1043. |
49 | LIU Y, WU P, LIU F, et al. Electroactive modified carbon nanotube filter for simultaneous detoxification and sequestration of Sb(Ⅲ)[J]. Environmental Science & Technology, 2019, 53(3): 1527-1535. |
50 | WANG Z B, JIA X L, GUAN Y J, et al. Preparation of CdS doped carbon nanotubes and their electrochemical properties[J]. Materials Science and Technology, 2015, 31(1): 43-47. |
51 | DUAN P Z, GAO S H, LI X, et al. Preparation of CeO2-ZrO2 and titanium dioxide coated carbon nanotube electrode for electrochemical degradation of ceftazidime from aqueous solution[J]. Journal of Electroanalytical Chemistry, 2019, 841: 10-20. |
52 | ZHANG Y C, XING Z P, ZOU J L, et al. 3D urchin-like black TiO2-x/carbon nanotube heterostructures as efficient visible-light-driven photocatalysts[J]. RSC Advances, 2017, 7(1): 453-460. |
53 | SHU X B, YANG Q, YAO F B, et al. Electrocatalytic hydrodechlorination of 4-chlorophenol on Pd supported multi-walled carbon nanotubes particle electrodes[J]. Chemical Engineering Journal, 2019, 358: 903-911. |
54 | 邓丽萍, 纪靓靓, 白朝暾. 二氧化锰改性碳纳米管对四环素和泰乐菌素的吸附[J]. 农业环境科学学报, 2015, 34(4): 781-786. |
DENG Liping, JI Liangliang, BAI Zhaotun. Adsorption of tetracycline and tylosin on MnO2 coated carbon nanotubes[J]. Journal of Agro-Environment Science, 2015, 34(4): 781-786. | |
55 | GAO C, VO C D, JIN Y Z, et al. Multihydroxy polymer-functionalized carbon nanotubes: synthesis, derivatization, and metal loading[J]. Macromolecules, 2005, 38(21): 8634-8648. |
56 | MOREIRA F C, BOAVENTURA R A R, BRILLAS E, et al. Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters[J]. Applied Catalysis B: Environmental, 2017, 202: 217-261. |
57 | NABIZADEH CHIANEH F, AVESTAN M S. Application of central composite design for electrochemical oxidation of reactive dye on Ti/MWCNT electrode[J]. Journal of the Iranian Chemical Society, 2020,17(5): 1073-1085. |
58 | CESARINO I, CESARINO V, MORAES F C, et al. Electrochemical degradation of benzene in natural water using silver nanoparticle-decorated carbon nanotubes[J]. Materials Chemistry and Physics, 2013, 141(1): 304-309. |
59 | FERREIRA M, PINTO M F, NEVES I C, et al. Electrochemical oxidation of aniline at mono and bimetallic electrocatalysts supported on carbon nanotubes[J]. Chemical Engineering Journal, 2015, 260: 309-315. |
60 | ESMAELIAN M, NABIZADEH CHIANEH F, ASGHARI A. Degradation of ciprofloxacin using electrochemical oxidation by Ti/nanoSnO2-MWCNT electrode: optimization and modelling through central composite design[J]. Journal of Industrial and Engineering Chemistry, 2019, 78: 97-105. |
61 | XU X L, ZHAO J, ZHOU Z H, et al. Effect of multi-walled carbon nanotubes addition on MnOx/Ti electrode prepared by spraying—calcination method for electro-catalytic oxidation of Acid Red B[J]. Journal of Materials Science, 2019, 54(19): 12509-12521. |
62 | DÍAZ E, STOZEK S, PATINO Y, et al. Electrochemical degradation of naproxen from water by anodic oxidation with multiwall carbon nanotubes glassy carbon electrode[J]. Water Science and Technology, 2019, 79(3): 480-488. |
63 | XU Z S, LIU H, NIU J F, et al. Hydroxyl multi-walled carbon nanotube-modified nanocrystalline PbO2 anode for removal of pyridine from wastewater[J]. Journal of Hazardous Materials, 2017, 327: 144-152. |
64 | ROTH H, GENDEL Y, BUZATU P, et al. Tubular carbon nanotube-based gas diffusion electrode removes persistent organic pollutants by a cyclic adsorption-electro-Fenton process[J]. Journal of Hazardous Materials, 2016, 307: 1-6. |
65 | BRILLAS E, SIRÉS I, OTURAN M A. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry[J]. Chemical Reviews, 2009, 109: 6570-6631. |
66 | TANG Q, LI B, MA W, et al. Fabrication of a double-layer membrane cathode based on modified carbon nanotubes for the sequential electro-Fenton oxidation of p-nitrophenol[J]. Environmental Science and Pollution Research, 2020, 27: 18773-18783. |
67 | TANG Q, WANG D, YAO D M, et al. Highly efficient electro-generation of hydrogen peroxide using NCNT/NF/CNT air diffusion electrode for electro-Fenton degradation of p-nitrophenol[J]. Water Science & Technology, 2016, 73(7): 1652-1658. |
68 | ALCAIDE F, ÁLVAREZ G, GUELFI D R V, et al. A stable CoSP/MWCNTs air-diffusion cathode for the photoelectro-Fenton degradation of organic pollutants at pre-pilot scale[J]. Chemical Engineering Journal, 2020, 379: 122417. |
69 | SCIALDONE O, GALIA A, GURRERI L, et al. Electrochemical abatement of chloroethanes in water: reduction, oxidation and combined processes[J]. Electrochimica Acta, 2010, 55: 701-708. |
70 | SUN Z R, MA X Y, HU X. Electrocatalytic dechlorination of 2,3,5-trichlorophenol on palladium/carbon nanotubes-nafion film/titanium mesh electrode[J]. Environmental Science and Pollution Research, 2017, 24(16): 14355-14364. |
71 | WANG H, WEI X J, BIAN Z Y. Degradation of 4-chlorophenol by the anodic-cathodic cooperative effect with a Pd/MWCNT gas-diffusion electrode[J]. Water Science & Technology, 2012, 65(11): 2010-2015. |
72 | SHENG X, WOUTERS B, BREUGELMANS T, et al. Cu/CuxO and Pt nanoparticles supported on multi-walled carbon nanotubes as electrocatalysts for the reduction of nitrobenzene[J]. Applied Catalysis B: Environmental, 2014, 147: 330-339. |
73 | LIU H, VECITIS C D. Reactive transport mechanism for organic oxidation during electrochemical filtration: mass-transfer, physical adsorption, and electron-transfer[J]. Journal of Physical Chemistry C, 2012, 116(1): 374-383. |
74 | YANG J, WANG J, JIA J. Improvement of electrochemical wastewater treatment through mass transfer in a seepage carbon nanotube electrode reactor[J]. Environmental Science & Technology, 2009, 43: 3796-3802. |
75 | LIU Y, LIU H, ZHOU Z, et al. Degradation of the common aqueous antibiotic tetracycline using a carbon nanotube electrochemical filter[J]. Environmental Science & Technology, 2015, 49: 7974-7980. |
76 | BAKR A R, RAHAMAN M S. Electrochemical efficacy of a carboxylated multiwalled carbon nanotube filter for the removal of ibuprofen from aqueous solutions under acidic conditions[J]. Chemosphere, 2016, 153: 508-520. |
77 | LIU Y B, ZHANG J, LIU F Q, et al. Ultra-rapid detoxification of Sb(Ⅲ) using a flow-through electro-Fenton system[J]. Chemosphere, 2020, 245: 125604. |
78 | LI Z Z, SHEN C S, LIU Y B, et al. Carbon nanotube filter functionalized with iron oxychloride for flow-through electro-Fenton[J]. Applied Catalysis B: Environmental, 2020, 260: 118204. |
79 | GAO G D, ZHANG Q Y, HAO Z W, et al. Carbon nanotube membrane stack for flow-through sequential regenerative electro-Fenton[J]. Environmental Science & Technology, 2015, 49(4): 2375-2383. |
80 | WEI G L, QUAN X, FAN X F, et al. Carbon-nanotube-based sandwich-like hollow fiber membranes for expanded microcystin-LR removal applications[J]. Chemical Engineering Journal, 2017, 319: 212-218. |
81 | WU X Q, SHEN J S, ZHAO F, et al. Flexible electrospun MWCNTs/Ag3PO4/PAN ternary composite fiber membranes with enhanced photocatalytic activity and stability under visible-light irradiation[J]. Journal of Materials Science, 2018, 53(14): 10147-10159. |
82 | SONG C, CHEN P, WANG C Y, et al. Photodegradation of perfluorooctanoic acid by synthesized TiO2-MWCNT composites under 365nm UV irradiation[J]. Chemosphere, 2012, 86(8): 853-859. |
83 | AHMAD M, AHMED E, HONG Z L, et al. Photocatalytic, sonocatalytic and sonophotocatalytic degradation of Rhodamine B using ZnO/CNTs composites photocatalysts[J]. Ultrasonics Sonochemistry, 2014, 21: 761-773. |
84 | DAI K, PENG T, KE D, et al. Photocatalytic hydrogen generation using a nanocomposite of multi-walled carbon nanotubes and TiO2 nanoparticles under visible light irradiation[J]. Nanotechnology, 2009, 20(12): 125603. |
85 | YE A, FAN W, ZHANG Q, et al. CdS-graphene and CdS-CNT nanocomposites as visible-light photocatalysts for hydrogen evolution and organic dye degradation[J]. Catalysis Science & Technology, 2012, 2: 969-978. |
86 | LI S J, HU S W, XU K B, et al. A novel heterostructure of BiOI nanosheets anchored onto MWCNTs with excellent visible-light photocatalytic activity[J]. Nanomaterials, 2017, 7(1): 22. |
87 | ZHAO H F, WANG S J, HE F T, et al. Hydroxylated carbon nanotube/carbon nitride nanobelt composites with enhanced photooxidation and H2 evolution efficiency[J]. Carbon, 2019, 150: 340-348. |
88 | 许凯, 杨胜楠, 沈忱思, 等. Ag/AgCl改性碳纳米管薄膜连续流光催化去除水中亚甲基蓝[J]. 环境工程学报, 2019, 13(6): 1305-1313. |
XU Kai, YANG Shengnan, SHEN Chensi, et al. Continuous-flow photocatalysis with Ag/AgCl modified carbon nanotubes filter towards methylene blue removal from water[J]. Chinese Journal of Environmental Engineering, 2019, 13(6): 1305-1313. | |
89 | HAYATI F, ISARI A A, ANVARIPOUR B, et al. Ultrasound-assisted photocatalytic degradation of sulfadiazine using MgO@CNT heterojunction composite: effective factors, pathway and biodegradability studies[J]. Chemical Engineering Journal, 2020, 381: 122636. |
90 | JIN J F, LIU M, FENG L H, et al. 3D Bombax-structured carbon nanotube sponge coupling with Ag3PO4 for tetracycline degradation under ultrasound and visible light irradiation[J]. Science of the Total Environment, 2019, 695: 133694. |
91 | WANG Q, SHANG J, SONG H, et al. Visible-light photoelectrocatalytic degradation of Rhodamine B over planar devices using a multi-walled carbon nanotube-TiO2 composite[J]. Materials Science in Semiconductor Processing, 2013, 16: 480-484. |
92 | LIU H, HUANG Q L, WANG Y F, et al. PTFE conductive membrane for EVMD process and the application of electro-catalysis[J]. Separation and Purification Technology, 2017, 187: 327-333. |
93 | PAN Z, SONG C, LI L, et al. Membrane technology coupled with electrochemical advanced oxidation processes for organic wastewater treatment: recent advances and future prospects[J]. Chemical Engineering Journal, 2019, 376: 120909. |
94 | SUN H, YANG X, ZHANG Y, et al. Segregation-induced in situ hydrophilic modification of poly(vinylidene fluoride) ultrafiltration membranes via sticky poly(ethylene glycol) blending[J]. Journal of Membrane Science, 2018, 563: 22-30. |
95 | MERKEL T C, FREEMAN B D, SPONTAK R J, et al. Ultrapermeable, reverse-selective nanocomposite membranes[J]. Science, 2002, 296: 519-522. |
96 | CHOI J, JEGAL J, KIM W. Fabrication and characterization of multi-walled carbon nanotubes/polymer blend membranes[J]. Journal of Membrane Science, 2006, 284: 406-415. |
97 | HOLT J K, PARK H G, WANG Y, et al. Fast mass transport through sub-2-nanometer carbon nanotubes[J]. Science, 2006, 312: 1034-1037. |
98 | QIU S, WU L, PAN X, et al. Preparation and properties of functionalized carbon nanotube/PSF blend ultrafiltration membranes[J]. Journal of Membrane Science, 2009, 342: 165-172. |
99 | BADAWI N EL, RAMADAN A R, ESAWI A M K, et al. Novel carbon nanotube-cellulose acetate nanocomposite membranes for water filtration applications[J]. Desalination, 2014, 344: 79-85. |
100 | VATANPOUR V, HAGHIGHAT N. Improvement of polyvinyl chloride nanofiltration membranes by incorporation of multiwalled carbon nanotubes modified with triethylenetetramine to use in treatment of dye wastewater[J]. Journal of Environmental Management, 2019, 242: 90-97. |
101 | FAN X, LIU Y, WANG X, et al. Improvement of antifouling and antimicrobial abilities on silver-carbon nanotube based membranes under electrochemical assistance[J]. Environmental Science & Technology, 2019, 53: 5292-5300. |
102 | 王艳春, 曾效舒, 袁秋红, 等. 氧化石墨烯/改性碳纳米管复合膜的制备及其分离水中Pb2+的效果[J]. 机械工程材料, 2017, 41(10): 33-37, 102. |
WANG Yanchun, ZENG Xiaoshu, YUAN Qiuhong, et al. Preparation and Pb2+ separation effect from water of graphene oxide/modified carbon nanotube composite membrane[J]. Materials for Mechanical Engineering, 2017, 41(10): 33-37, 102. | |
103 | FAN X F, ZHAO H M, QUAN X, et al. Nanocarbon-based membrane filtration integrated with electric field driving for effective membrane fouling mitigation[J]. Water Research, 2016, 88: 285-292. |
104 | KHAN N, ANWER A H, AHMAD A, et al. Investigation of CNT/PPy-modified carbon paper electrodes under anaerobic and aerobic conditions for phenol bioremediation in microbial fuel cells[J]. ACS Omega, 2020, 5: 471-480. |
105 | 李德云, 刘龙飞, 李成亮, 等. Cu/CuO改性碳纳米管对亚甲基蓝的吸附特征[J]. 农业环境科学学报, 2018, 37(10): 2289-2296. |
LI Deyun, LIU Longfei, LI Chengliang, et al. Characterization of adsorption of methylene blue by Cu/CuO-modified carbon nanotubes[J]. Journal of Agro-Environment Science, 2018, 37(10): 2289-2296. | |
106 | MA T, WU Y H, LIU N N, et al. Iron manganese oxide modified multi-walled carbon nanotube as efficient adsorbent for removal of organic dyes: performance, kinetics and mechanism studies[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30(10): 4027-4042. |
107 | 王彩云, 刘恋, 李创, 等. MWCNTs改性凹凸棒土对水中Cr(Ⅵ)的吸附研究[J]. 中国环境科学, 2017, 37(6): 2179-2186. |
WANG Caiyun, LIU Lian, LI Chuang, et al. Adsorption of Cr(Ⅵ) on the MWCNTs/attapulgite composites[J]. China Environmental Science, 2017, 37(6): 2179-2186. | |
108 | 任逸飞, 张运海, 于水利, 等. 改性碳纳米管吸附去除TBBPA效果与动力学特性[J]. 供水技术, 2017, 11(1): 1-7. |
REN Yifei, ZHANG Yunhai, YU Shuili, et al. Removal effect of TBBPA and kinetic features by modified MWCNTs[J]. Water Technology, 2017, 11(1): 1-7. | |
109 | REIPA V, HANNA S K, URBAS A, et al. Efficient electrochemical degradation of multiwall carbon nanotubes[J]. Journal of Hazardous Materials, 2018, 354: 275-282. |
110 | ZHAO Y, ALLEN B L, STAR A. Enzymatic degradation of multiwalled carbon nanotubes[J]. Journal of Physical Chemistry A, 2011, 115: 9536-9544. |
111 | GARNER K L, SUH S, LENIHAN H S, et al. Species sensitivity distributions for engineered nanomaterials[J]. Environmental Science & Technology, 2015, 49: 5753-5759. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[4] | 雷伟, 姜维佳, 王玉高, 和明豪, 申峻. N、S共掺杂煤基碳量子点的电化学氧化法制备及用于Fe3+检测[J]. 化工进展, 2023, 42(9): 4799-4807. |
[5] | 王晨, 白浩良, 康雪. 大功率UV-LED散热与纳米TiO2光催化酸性红26耦合系统性能[J]. 化工进展, 2023, 42(9): 4905-4916. |
[6] | 黄玉飞, 李子怡, 黄杨强, 金波, 罗潇, 梁志武. 光催化CO2和CH4重整催化剂研究进展[J]. 化工进展, 2023, 42(8): 4247-4263. |
[7] | 郭立行, 庞蔚莹, 马克遥, 杨镓涵, 孙泽辉, 张盼, 付东, 赵昆. 层序空间多孔结构TiO2实现高效光催化CO2还原[J]. 化工进展, 2023, 42(7): 3643-3651. |
[8] | 单雪影, 张濛, 张家傅, 李玲玉, 宋艳, 李锦春. 阻燃型环氧树脂的燃烧数值模拟[J]. 化工进展, 2023, 42(7): 3413-3419. |
[9] | 于志庆, 黄文斌, 王晓晗, 邓开鑫, 魏强, 周亚松, 姜鹏. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560. |
[10] | 杨竞莹, 施万胜, 黄振兴, 谢利娟, 赵明星, 阮文权. 改性纳米零价铁材料制备的研究进展[J]. 化工进展, 2023, 42(6): 2975-2986. |
[11] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
[12] | 朱雅静, 徐岩, 简美鹏, 李海燕, 王崇臣. 金属有机框架材料用于海水提铀的研究进展[J]. 化工进展, 2023, 42(6): 3029-3048. |
[13] | 张宁, 吴海滨, 李钰, 李剑锋, 程芳琴. 漂浮型光催化材料的制备及其在水处理领域的应用研究进展[J]. 化工进展, 2023, 42(5): 2475-2485. |
[14] | 陈飞, 刘成宝, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基超级电容器用电极材料的研究进展[J]. 化工进展, 2023, 42(5): 2566-2576. |
[15] | 刘念, 陈葵, 武斌, 纪利俊, 吴艳阳, 韩金玲. 蛋黄-壳介孔磁性炭微球的制备及其对红霉素的高效吸附[J]. 化工进展, 2023, 42(5): 2724-2732. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |