1 | 周念清, 赵姗, 沈新平. 天然湿地演替带氮循环研究进展[J]. 科学通报, 2014, 59(18): 1688-1699. | 1 | ZHOU N Q, ZHAO S, SHEN X P. Nitrogen cycle in the hyporheic zone of natural wetlands[J]. Chin. Sci. Bull., 2014, 59(18): 1688-1699. | 2 | 刘全凤. 浅谈氮循环及氮污染[J]. 现代农业科技, 2007(12): 189-193. | 2 | LIU Q F. The study of the nitrogen cycle and nitrogen pollution[J]. Modern Agricultural Science and Technology, 2007(12): 189-193. | 3 | 万先凯. 渗氮和热处理对炭还原NO的活性影响及机理研究[D]. 杭州: 浙江大学, 2008. | 3 | WAN X K. Effect of nitrogen doping and heat treatment on reduction of NO with activated carbons and mechanisms thereof[D]. Hangzhou: Zhejiang University, 2008. | 4 | 李兰娟, 刘福强, 凌盼盼, 等. 含氮废水处理技术和工艺研究进展[J]. 安全与环境学报, 2009, 9(5): 46-51. | 4 | LI L J, LIU F Q, LING P P, et al. Research progress of nitrogen-containing wastewater treatment technology and process[J]. Journal of Safety and Environment, 2009, 9(5): 46-51. | 5 | LEVY-BOOTH D J, PRESCOTT C E, GRAYSTON S J. Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems[J]. Soil Biol. Biochem., 2014, 75:11-25. | 6 | 毛艳萍, 蔡兰坤, 张乐华, 等. 生物阴极微生物燃料电池[J]. 化学进展, 2009, 21(S2): 1672-1677. | 6 | MAO Y P, CAI L K, ZHANG L H, et al. Biocathodes in microbial fuel cell[J]. Progress in Chemistry, 2009, 21(S2): 1672-1677. | 7 | 蒋沁芮, 杨暖, 吴亭亭, 等. 生物电化学脱氮技术研究进展[J]. 应用与环境生物学报, 2018, 24(2): 408-414. | 7 | JIANG Q R, YANG N, WU T T, et al. Nitrogen removal from wastewater using the bioelectrochemical technology: a review[J]. Chin. J. Appl. Environ. Biol., 2018, 24(2): 408-414. | 8 | 谢婷玉, 荆肇乾, 徐佳莹. 生物阴极型微生物燃料电池脱氮研究进展[J]. 应用化工, 2016, 45(7): 1354-1358. | 8 | XIE T Y, JING Z Q,XU J Y. Research progress in biocathode microbial fuel cell for nitrogen removal[J]. Applied Chemical Industry, 2016, 45(7): 1354-1358. | 9 | XU D, LI Y, YIN L F, et al. Electrochemical removal of nitrate in industrial wastewater[J]. Front. Env. Sci. Eng., 2018, 12(1): 9. | 10 | 迟峰. 反渗透法脱除地下水中硝酸盐的研究[D]. 上海: 华东理工大学, 2011. | 10 | CHI F. The research on nitrate removal from groundwater by reverse osmosis[D]. Shanghai: East China University of Science and Technology, 2011. | 11 | SCHOEMAN J J, STEYN A. Nitrate removal with reverse osmosis in a rural area in South Africa[J]. Desalination, 2003, 155(1): 15-26. | 12 | ZHAO Y X, FENG C P, WANG Q H, et al. Nitrate removal from groundwater by cooperating heterotrophic with autotrophic denitrification in a biofilm-electrode reactor[J]. Journal of Hazardous Materials, 2011, 192(3): 1033-1039. | 13 | 郝晓地, 李季, 李爽, 等. 从污水中技术回收氮不具经济性[J]. 中国给水排水, 2017, 33(20): 28-33. | 13 | HAO X D, LI J, LI S, et al. Nitrogen recovery from wastewater: no benefit in economy[J]. China Water & Wastewater, 2017, 33(20): 28-33. | 14 | PROSNANSKY M, SAKAKIBARA Y, KURODA M. High-rate denitrification and SS rejection by biofilm-electrode reactor (BER) combined with microfiltration[J]. Water Research, 2002, 36(19): 4801-4810. | 15 | HELLINGA C, SCHELLEN A A J C, MULDER J W, et al. The sharon process: an innovative method for nitrogen removal from ammonium-rich waste water[J]. Water Science & Technology, 1998, 37(9): 135-142. | 16 | 林涛, 操家顺, 钱艳. 新型的脱氮工艺——SHARON工艺[J]. 环境污染与防治, 2003, 25(3): 164-166. | 16 | LIN T, CAO J S, QIAN Y. New denitrification process—SHARON process[J]. Environmental Pollution & Control, 2003, 25(3): 164-166. | 17 | 叶建锋, 徐祖信, 薄国柱. 新型生物脱氮工艺——OLAND工艺[J]. 中国给水排水, 2006, 22(4): 6-8. | 17 | YE J F, XU Z X, BO G Z. New type biological denitrification process—OLAND process[J]. China Water & Wastewater, 2006, 22(4): 6-8. | 18 | 左早荣, 付昆明, 仇付国, 等. CANON工艺的研究现状及面临困难分析[J]. 水处理技术, 2013, 39(9): 15-19. | 18 | ZUO Z R, FU K M, QIU F G, et al. Analysis of the research status and difficulties of CANON process[J]. Technology of Water Treatment, 2013, 39(9): 15-19. | 19 | 王颖哲. 基于ANAMMOX工艺基础上的DEAMOX新型生物脱氮工艺[J]. 工业用水与废水, 2009, 40(4): 5-8. | 19 | WANG Y Z. DEAMOX-new biological nitrogen removal process based on ANAMMOX[J]. Industrial Water & Wastewater, 2009, 40(4): 5-8. | 20 | WETT B. Solved upscaling problems for implementing deammonification of rejection water[J]. Water Science & Technology, 2006, 53(12): 121-128. | 21 | KARTAL B, NIFTRIK L VAN, RATTRAY J, et al. Candidatus 'Brocadia fulgida': an autofluorescent anaerobic ammonium oxidizing bacterium[J]. Fems. Microbiol. Ecol., 2008, 63(1): 46-55. | 22 | TWOMEY K M, STILLWELL A S, WEBBER M E. The unintended energy impacts of increased nitrate contamination from biofuels production[J]. Journal of Environmental Monitoring, 2010, 12(1): 218-224. | 23 | TANG R, WU D, CHEN W H, et al. Biocathode denitrification of coke wastewater effluent from an industrial aeration tank: effect of long-term adaptation[J]. Biochemical Engineering Journal, 2017, 125:151-160. | 24 | ZHANG L, YANG J C, FURUKAWA K. Stable and high-rate nitrogen removal from reject water by partial nitrification and subsequent anammox[J]. J. Biosci. Bioeng., 2010, 110(4): 441-448. | 25 | QU B, FAN B, ZHU S K, et al. Anaerobic ammonium oxidation with an anode as the electron acceptor[J]. Env. Microbiol Rep., 2014, 6(1): 100-105. | 26 | LI N, WAN Y, WANG X. Nutrient conversion and recovery from wastewater using electroactive bacteria[J]. The Science of the Total Environment, 2019, 706:135690. | 27 | WAN Y, HUANG Z, ZHOU L, et al. Bioelectrochemical ammoniation coupled with microbial electrolysis for nitrogen recovery from nitrate in wastewater[J]. Environmental Science & Technology, 2020, 54(5): 3002-3011. | 28 | WAN Y X, ZHOU L A, WANG S, et al. Syntrophic growth of geobacter sulfurreducens accelerates anaerobic denitrification[J]. Frontiers in Microbiology, 2018, 9:1572. | 29 | PHAM T H, RABAEY K, AELTERMAN P, et al. Microbial fuel cells in relation to conventional anaerobic digestion technology[J]. Engineering in Life Sciences, 2010, 6(3): 285-292. | 30 | GREGOIRE K P, GLAVEN S M, HERVEY J, et al. Enrichment of a high-current density denitrifying microbial biocathode[J]. J. Electrochem Soc., 2014, 161(13): H3049-H3057. | 31 | WAN D J, LIU H J, LIU R P, et al. Study of a combined sulfur autotrophic with proton-exchange membrane electrodialytic denitrification technology: sulfate control and pH balance[J]. Bioresource Technology, 2011, 102(23): 10803-10809. | 32 | SAYESS R R, SAIKALY P E, ELFADEL M, et al. Reactor performance in terms of COD and nitrogen removal and bacterial community structure of a three-stage rotating bioelectrochemical contactor[J]. Water Research, 2013, 47(2): 881-894. | 33 | DOGAN E C, TURKER M, DAGASAN L, et al. Simultaneous sulfide and nitrite removal from industrial wastewaters under denitrifying conditions[J]. Biotechnol. Bioproc. E, 2012, 17(3): 661-668. | 34 | KHUDZARI J MD, TARTAKOVSKY B, RAGHAVAN G S V. Effect of C/N ratio and salinity on power generation in compost microbial fuel cells[J]. Waste Manage, 2016, 48:135-142. | 35 | PAINTER H A. Microbial transformations of inorganic nitrogen[J]. Progress in Water Technology, 1977, 8(4): 3-29. | 36 | POCHANA K, KELLER J. Study of factors affecting simultaneous nitrification and denitrification (SND)[J]. Water Science & Technology, 1999, 39(6): 61-68. | 37 | JIN P, CHEN Y Y, XU T, et al. Efficient nitrogen removal by simultaneous heterotrophic nitrifying-aerobic denitrifying bacterium in a purification tank bioreactor amended with two-stage dissolved oxygen control[J]. Bioresource Technology, 2019, 281:392-400. | 38 | YOU S J, REN N Q, ZHAO Q L, et al. Improving phosphate buffer-free cathode performance of microbial fuel cell based on biological nitrification[J]. Biosensors & Bioelectronics, 2009, 24(12): 3698-3701. | 39 | WU Y, YANG Q, ZENG Q N, et al. Enhanced low C/N nitrogen removal in an innovative microbial fuel cell (MFC) with electroconductivity aerated membrane (EAM) as biocathode[J]. Chemical Engineering Journal, 2017, 316:315-322. | 40 | MüNCH E V, LANT P, KELLER J. Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors[J]. Water Research, 1996, 30(2): 277-284. | 41 | LOOSDRECHT M C M V, JETTEN M S M. Microbiological conversions in nitrogen removal[J]. Water Science & Technology, 1998, 38(1): 1-7. | 42 | GULSUM Y, ROMAIN L, JURG K, et al. Simultaneous nitrification, denitrification, and phosphorus removal from nutrient-rich industrial wastewater using granular sludge[J]. Biotechnology & Bioengineering, 2010, 100(3): 529-541. | 43 | MEYER R L, ZENG R J X, GIUGLIANO V, et al. Challenges for simultaneous nitrification, denitrification, and phosphorus removal in microbial aggregates: mass transfer limitation and nitrous oxide production[J]. Fems. Microbiol. Ecol., 2005, 52(3): 329-338. | 44 | VIRDIS B, READ S T, RABAEY K, et al. Biofilm stratification during simultaneous nitrification and denitrification (SND) at a biocathode[J]. Bioresource Technology, 2011, 102(1): 334-341. | 45 | GóMEZ M A, HONTORIA E, GONZáLEZ-LóPEZ J. Effect of dissolved oxygen concentration on nitrate removal from groundwater using a denitrifying submerged filter[J]. Journal of Hazardous Materials, 2002, 90(3): 267-278. | 46 | RIMBOUD M, BERGEL A, ERABLE B. Multiple electron transfer systems in oxygen reducing biocathodes revealed by different conditions of aeration/agitation[J]. Bioelectrochemistry, 2016, 110:46-51. | 47 | POUS N, CARMONA-MART NEZ A A, VILAJELIU-PONS A, et al. Bidirectional microbial electron transfer: switching an acetate oxidizing biofilm to nitrate reducing conditions[J]. Biosensors & Bioelectronics, 2016, 75:352-358. | 48 | 龙海. 生物阴极微生物燃料电池产电同步除碳脱氮的实验研究[D]. 南京: 东南大学, 2013. | 48 | LONG H. The study of the bio-cathode microbial fuel cells for simultaneous carbon nitrogen removal and electricity generation[D]. Nanjing: Southeast University, 2013. | 49 | ZHAO J Q, WU J N, LI X L, et al. The denitrification characteristics and microbial community in the cathode of an MFC with aerobic denitrification at high temperatures[J]. Frontiers in Microbiology, 2017, 8:9. | 50 | SALEH-LAKHA S, SHANNON K, HENDERSON S, et al. Effect of pH and temperature on denitrification gene expression and activity in pseudomonas mandelii[J]. Applied & Environmental Microbiology, 2009, 75(12): 3903. | 51 | KUMAR R, SINGH L, ZULARISAM A W. Exoelectrogens: recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications[J]. Renew Sust. Energ. Rev., 2016, 56:1322-1336. | 52 | MENG X, DONG Q, CAO X. Nitrite accumulation during wastewater denitrification[C]// Electrical and Control Engineering (ICECE), 2010 International Conference on. IEEE Computer Society,Wuhan,China, 2010. | 53 | BOULANGER M J, KUKIMOTO M, NISHIYAMA M, et al. Catalytic roles for two water bridged residues (Asp-98 and His-255) in the active site of copper-containing nitrite reductase[J]. Journal of Biological Chemistry, 2000, 275(31): 23957-23964. | 54 | KATAOKA K, FURUSAWA H, TAKAGI K, et al. Functional analysis of conserved aspartate and histidine residues located around the type 2 copper site of copper-containing nitrite reductase[J]. Journal of Biochemistry, 2000, 127(2): 345. | 55 | KOBAYASHI K, TAGAWA S, SUZUKI S. The pH-dependent changes of intramolecular electron transfer on copper-containing nitrite reductase[J]. Journal of Biochemistry, 1999, 126(2): 408. | 56 | QIAN J, LU H, CUI Y X, et al. Investigation on thiosulfate-involved organics and nitrogen removal by a sulfur cycle-based biological wastewater treatment process[J]. Water Research, 2015, 69:295-306. | 57 | TH RN M, RENSSON F S. Variation of nitrous oxide formation in the denitrification basin in a wastewater treatment plant with nitrogen removal[J]. Water Research, 1996, 30(30): 1543-1547. | 58 | MA J, YANG Q, WANG S, et al. Effect of free nitrous acid as inhibitors on nitrate reduction by a biological nutrient removal sludge[J]. Journal of Hazardous Materials, 2010, 175(1): 518-523. | 59 | ANTHONISEN A C, LOEHR R C, PRAKASAM T B S, et al. Inhibition of nitrification by ammonia and nitrous-acid[J]. J. Water Pollut. Con. F., 1976, 48(5): 835-852. | 60 | ZHOU Y, OEHMEN A, LIM M, et al. The role of nitrite and free nitrous acid (FNA) in wastewater treatment plants[J]. Water Research, 2011, 45(15): 4672-4682. | 61 | VADIVELU V M, ZHIGUO Y, CHRISTIAN F, et al. The inhibitory effects of free nitrous acid on the energy generation and growth processes of an enriched nitrobacter culture[J]. Environmental Science & Technology, 2006, 40(14): 4442-4448. | 62 | LIU Y, MAITE P, ZHIGUO Y. The effect of free nitrous acid on the anabolic and catabolic processes of glycogen accumulating organisms[J]. Water Research, 2010, 44(9): 2901-2909. | 63 | HELLINGA C, LOOSDRECHT M C M V, HEIJNEN J J. Model based design of a novel process for nitrogen removal from concentrated flows[J]. Mathematical Modelling of Systems, 1999, 5(4): 351-371. | 64 | KINH C T, AHN J, SUENAGA T, et al. Free nitrous acid and pH determine the predominant ammonia-oxidizing bacteria and amount of N2O in a partial nitrifying reactor[J]. Appl. Microbiol. Biot., 2017, 101(4): 1673-1683. | 65 | BAUMANN B, VANDERMEE J R, SNOZZI M, et al. Inhibition of denitrification activity but not of mRNA induction in paracoccus denitrificans by nitrite at a suboptimal pH[J]. Anton. Leeuw. Int. J. G., 1997, 72(3): 183-189. | 66 | KONDAVEETI S, LEE S H, PARK H D, et al. Bacterial communities in a bioelectrochemical denitrification system: the effects of supplemental electron acceptors[J]. Water Research, 2013, 51C(12):25-36. | 67 | KELSO B H L, SMITH R V, LAUGHLIN R J. Effects of carbon substrates on nitrite accumulation in freshwater sediments[J]. Appl. Environ. Microb., 1999, 65(1): 61-66. | 68 | KIM J, KIM B, KIM H, et al. Effects of ammonium ions from the anolyte within bio-cathode microbial fuel cells on nitrate reduction and current density[J]. International Biodeterioration & Biodegradation, 2014, 95:122-126. | 69 | XU J, SHENG G P, LUO H W, et al. Fouling of proton exchange membrane (PEM) deteriorates the performance of microbial fuel cell[J]. Water Research, 2012, 46(6): 1817-1824. | 70 | ROBERTSON E K, ROBERTS K L, BURDORF L D W, et al. Dissimilatory nitrate reduction to ammonium coupled to Fe(II) oxidation in sediments of a periodically hypoxic estuary[J]. Limnology & Oceanography, 2016, 61(1): 365-381. | 71 | SATO C, SCHNOOR J L, MCDONALD D B. Characterization of effects of copper, cadmium and nickel on the growth of Nitrosomonas Europaea[J]. Environmental Toxicology & Chemistry, 2010, 5(4): 403-416. | 72 | DUTTON R J, BITTON G, KOOPMAN B. Rapid test for toxicity in wastewater systems[J]. Toxicity Assessment, 2010, 1(2): 147-158. | 73 | ANDERSON K, KOOPMAN B, BITTON G. Evaluation of int-dehydrogenase assay for heavy metal inhibition of activated sludge[J]. Water Research, 1988, 22(3): 349-353. | 74 | OCHOA-HERRERA V, LEON G, BANIHANI Q, et al. Toxicity of copper(II) ions to microorganisms in biological wastewater treatment systems[J]. Sci. Total Environ., 2011, 412:380-385. | 75 | WATANABE T, MOTOYAMA H, KURODA M. Denitrification and neutralization treatment by direct feeding of an acidic wastewater containing copper ion and high-strength nitrate to a bio-electrochemical reactor process[J]. Water Research, 2001, 35(17): 4102-4110. | 76 | 李志华, 张婷, 吴杰, 等. 异养菌与自养菌对好氧颗粒污泥稳定性的影响[J].土木建筑与环境工程, 2010, 32(5): 76-81. | 76 | LI Z H, ZHANG T, WU J, et al. Effects of eterotrophic and autotrophic bacteria on the stability of aerobic granular sludge[J]. Journal of Civil Architectural & Environmental Engineering, 2010, 32(5): 76-81. | 77 | POUS N, PUIG S, BALAGUER M D, et al. Cathode potential and anode electron donor evaluation for a suitable treatment of nitrate-contaminated groundwater in bioelectrochemical systems[J]. Chemical Engineering Journal, 2015, 263:151-159. | 78 | LIANG P, YUAN L, WU W L, et al. Enhanced performance of bio-cathode microbial fuel cells with the applying of transient-state operation modes[J]. Bioresource Technology, 2013, 147(8): 228-233. | 79 | ZAYBAK Z, PISCIOTTA J M, TOKASH J C, et al. Enhanced start-up of anaerobic facultatively autotrophic biocathodes in bioelectrochemical systems[J]. J. Biotechnol., 2013, 168(4): 478-485. | 80 | 林虹, 刘小明, 杜联盟. 有机废气的生物膜净化过程[J]. 科技创新导报, 2013(14): 129. | 80 | LIN H, LIU X M, DU L M. Biofilm purification process of organic waste gas[J]. Science and Technology Innovation Herald, 2013(14): 129. | 81 | ZHANG B, LIU Y E, SHUANG T, et al. Enhancement of bacterial denitrification for nitrate removal in groundwater with electrical stimulation from microbial fuel cells[J]. Journal of Power Sources, 2014, 268: 423-429. | 82 | NGUYEN V K, PARK Y, YANG H, et al. Effect of the cathode potential and sulfate ions on nitrate reduction in a microbial electrochemical denitrification system[J]. Journal of Industrial Microbiology & Biotechnology, 2016, 43(6): 783-793. | 83 | WENTAO S, LIXIA Z, DAPING L, et al. Dissimilatory nitrate reduction by Pseudomonas alcaliphila with an electrode as the sole electron donor[J]. Biotechnology & Bioengineering, 2012, 109(11): 2904-2910. | 84 | HUANG H, LI X, LI Z, et al. Direct uptake of electrode electrons for autotrophic denitrification by Thiobacillus denitrificans[J]. Electrochemistry Communications, 2015, 60(4): 126-130. | 85 | YU L P, YUAN Y, RENSING C, et al. Combined spectroelectrochemical and proteomic characterizations of bidirectional Alcaligenes faecalis-electrode electron transfer[J]. Biosensors & Bioelectronics, 2018, 106: 21-28. | 86 | KOHNO T, SEI K, MORI K. Characterization of type 1851 organism isolated from activated sludge samples[J]. Water Science & Technology, 2002, 46(1-2): 111-114. | 87 | VILARSANZ A, PUIG S, GARC ALLED A, et al. Denitrifying bacterial communities affect current production and nitrous oxide accumulation in a microbial fuel cell[J]. PLoS One, 2013, 8(5): e63460. | 88 | XIE D, HUI Y, LI C, et al. Competitive microbial reduction of perchlorate and nitrate with a cathode directly serving as the electron donor[J]. Electrochimica Acta, 2014, 133(133): 217-223. | 89 | TUAN V D, KWON L TAE, SUDHEER KUMAR S, et al. Increased nitrous oxide accumulation by bioelectrochemical denitrification under autotrophic conditions: kinetics and expression of denitrification pathway genes?[J]. Water Research, 2013, 47(19): 7087-7097. | 90 | CARLSON C A, INGRAHAM J L. Comparison of denitrification by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Paracoccus denitrificans[J]. Applied & Environmental Microbiology, 1983, 45(4): 1247-1253. | 91 | HERTO DWI A, TSUKASA I, SATOSHI O. Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester[J]. Water Research, 2007, 41(7): 1554-1568. | 92 | ZHANG Y J, XU W W, XIANG Y, et al. Kinetics and gene diversity of denitrifying biocathode in biological electrochemical systems[J]. RSC Adv., 2017, 7(40): 24981-24987. | 93 | RICHTER H, NEVIN K P, JIA H F, et al. Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer[J]. Energ. Environ. Sci., 2009, 2(5): 506-516. | 94 | GREGORY K B, BOND D R, LOVLEY D R. Graphite electrodes as electron donors for anaerobic respiration[J]. Environmental Microbiology, 2004, 6(6): 596-604. | 95 | GHAFARI S, HASAN M, AROUA M K. Effect of carbon dioxide and bicarbonate as inorganic carbon sources on growth and adaptation of autohydrogenotrophic denitrifying bacteria[J]. Journal of Hazardous Materials, 2009, 162(2): 1507-1513. | 96 | SAKAKIBARA Y, NAKAYAMA T. A novel multi-electrode system for electrolytic and biological water treatments: electric charge transfer and application to denitrification[J]. Water Research, 2001, 35(3): 768-778. | 97 | SUIDAN M T. Electrolytic denitrification: long term performance and effect of current intensity[J]. Water Research, 1998, 32(2): 528-536. | 98 | WANG H M, LIU J, HE W H, et al. Energy-positive nitrogen removal from reject water using a tide-type biocathode microbial electrochemical system[J]. Bioresource Technology, 2016, 222:317-325. | 99 | ZHOU M H, WANG W, CHI M L. Enhancement on the simultaneous removal of nitrate and organic pollutants from groundwater by a three-dimensional bio-electrochemical reactor[J]. Bioresource Technology, 2009, 100(20): 4662-4668. | 100 | ZHANG L, JIA J, ZHU Y, et al. Electro-chemically improved bio-degradation of municipal sewage[J]. Biochemical Engineering Journal, 2005, 22(3): 239-244. | 101 | VILAJELIU-PONS A, PUIG S, POUS N, et al. Microbiome characterization of MFCs used for the treatment of swine manure[J]. Journal of Hazardous Materials, 2015, 288:60-68. | 102 | MOLOGNONI D, DEVECSERI M, CECCONET D, et al. Cathodic groundwater denitrification with a bioelectrochemical system[J]. J. Water Process Eng., 2017, 19:67-73. | 103 | AL-MAMUN A, BAAWAIN M S, EGGER F, et al. Optimization of a baffled-reactor microbial fuel cell using autotrophic denitrifying bio-cathode for removing nitrogen and recovering electrical energy[J]. Biochemical Engineering Journal, 2017, 120: 93-102. | 104 | POUS N, PUIG S, COMA M, et al. Bioremediation of nitrate-polluted groundwater in a microbial fuel cell[J]. Journal of Chemical Technology & Biotechnology, 2013, 88(9): 1690-1696. | 105 | VILAJELIU-PONS A, PUIG S, POUS N, et al. Microbiome characterization of MFCs used for the treatment of swine manure[J]. Journal of Hazardous Materials, 2015, 288: 60-68. |
|