化工进展 ›› 2021, Vol. 40 ›› Issue (2): 621-634.DOI: 10.16085/j.issn.1000-6613.2020-0724
王哲1,2, 韩凤翚1(), 纪玉龙1,2, 李文华1, 厉彦忠3
收稿日期:
2020-05-06
修回日期:
2020-07-08
出版日期:
2021-02-05
发布日期:
2021-02-09
通讯作者:
韩凤翚
作者简介:
王哲(1986—),男,副教授,硕士生导师,研究方向为制冷低温、强化传热。
基金资助:
Zhe WANG1,2, Fenghui HAN1(), Yulong JI1,2, Wenhua LI1, Yanzhong LI3
Received:
2020-05-06
Revised:
2020-07-08
Online:
2021-02-05
Published:
2021-02-09
Contact:
Fenghui HAN
摘要:
针对多股流体流动换热、复杂翅片结构优化、多重通道排布匹配以及低温工程应用等特点,本文归纳分析了低温多股流板翅式换热器结构设计中凸显的流股换热匹配、通道分配排列、多物理场叠加以及低温特殊工况下的应用等问题。总结了在通道结构优化与零部件设计中,通过翅片通道传热流动特性及相关性能评价方法来指导结构选型。文章还深入分析国内外现状,讨论了板翅式换热器的研究热点与发展方向。文章指出低温多股流板翅式换热器应用于大型空分等石化工业流程中优势明显,可显著提高气体液化率,降低实际能耗,进而提升系统运行效率。因此,对于实际应用中可能遇到的设计问题,应考虑结合局部换热网络与多流股匹配、翅片结构设计与通道排列算法优化、多场仿真与试验研究等手段形成合理优化方法和设计框架,来摆脱目前传统经验试凑所带来的限制。
中图分类号:
王哲, 韩凤翚, 纪玉龙, 李文华, 厉彦忠. 低温多股流板翅式换热器设计优化方法研究进展[J]. 化工进展, 2021, 40(2): 621-634.
Zhe WANG, Fenghui HAN, Yulong JI, Wenhua LI, Yanzhong LI. Research progress of cryogenic multi-stream plate-fin heat exchanger on design and optimization method[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 621-634.
建模问题 | 集总法 | 分布法 | 演化法 |
---|---|---|---|
单相换热 | √ | √ | √ |
两相换热 | × | √ | √ |
流体变物性 | × | √ | √ |
多流体换热 | × | √ | √ |
多组分混合 | × | × | √ |
任意进出 | × | √ | √ |
寄生热负荷 | × | √ | √ |
轴向导热 | × | √ | √ |
流动不均 | × | × | √ |
压降影响 | × | × | × |
表1 换热器建模方法的适用性
建模问题 | 集总法 | 分布法 | 演化法 |
---|---|---|---|
单相换热 | √ | √ | √ |
两相换热 | × | √ | √ |
流体变物性 | × | √ | √ |
多流体换热 | × | √ | √ |
多组分混合 | × | × | √ |
任意进出 | × | √ | √ |
寄生热负荷 | × | √ | √ |
轴向导热 | × | √ | √ |
流动不均 | × | × | √ |
压降影响 | × | × | × |
1 | 韩一松, 彭旭东. 大型及特大型空分设备节能减排技术和实践[J]. 深冷技术, 2017(1): 1-3. |
HAN Yisong, PENG Xudong. Technology of and practice on energy-saving & emission reducing for large sized and extra-large sized air separation plant[J]. Cryogenic Technology, 2017(1): 1-3. | |
2 | 何建龙, 毛央平. 空分设备板翅式换热器参数与能耗分析[J]. 深冷技术, 2011(3): 29-31. |
HE Jianlong, MAO Yangping. Analysis of parameters and energy consumption of plate-fin heat exchanger of air separation plant[J]. Cryogenic Technology, 2011(3): 29-31. | |
3 | THOMAS R J, GHOSH P, CHOWDHURY K. Role of heat exchangers in helium liquefaction cycles: simulation studies using Collins cycle[J]. Fusion Engineering and Design, 2012, 87(1): 39-46. |
4 | 孟雪, 荆恒铸, 曹真真, 等. 基于Aspen EDR的管壳式换热器的设计[J]. 化工进展, 2019, 38(S1): 275-277. |
MEGN Xue, JING Hengzhu, CAO Zhenzhen, et al. Design of shell and tube heat exchanger based on Aspen EDR[J]. Chemical Industry and Engineering Progress, 2019, 38(S1): 275-277. | |
5 | 欧阳新萍, 秦洁, 薛林锋, 等. 多股流绕管式换热器的管束排布及传热计算[J]. 化工进展, 2019, 38(S1): 39-45. |
OUYANG Xinping, QIN Jie, XUE Linfeng, et al. Tube bundle arrangements and heat transfer calculations of multi-stream spiral-wound heat exchanger[J]. Chemical Industry and Engineering Progress, 2019, 38(S1): 39-45. | |
6 | WANG Zhe, LI Yanzhong. Layer pattern thermal design and optimization for multistream plate-fin heat exchangers—A review[J]. Renewable and Sustainable Energy Reviews, 2016, 53: 500-514. |
7 | YANG Yujie, LI Yanzhong. General prediction of the thermal hydraulic performance for plate-fin heat exchanger with offset strip fins[J]. International Journal of Heat and Mass Transfer, 2014, 78: 860-870. |
8 | 杨宇杰. 室温至液氦温区锯齿型翅片通道内流动与换热性能及其评价方法研究[D]. 西安: 西安交通大学, 2016. |
YANG Yujie. Study of fluid flow and heat transfer and its perfromance evaluation of offset strip fins from ambient temperature to liquid helium temperature[D]. Xi’an: Xi’an Jiaotong University, 2016. | |
9 | WANG Zhe, CAI Wenjian, HAN Fenghui, et al. Feasibility study on a novel heat exchanger network for cryogenic liquid regasification with cooling capacity recovery: theoretical and experimental assessments[J]. Energy, 2019, 181: 771-781. |
10 | BHOWMIK H, Kwan-Soo LEE. Analysis of heat transfer and pressure drop characteristics in an offset strip fin heat exchanger[J]. International Communications in Heat and Mass Transfer, 2009, 36(3): 259-263. |
11 | SAHA P, BISWAS G, SARKAR S. Comparison of winglet-type vortex generators periodically deployed in a plate-fin heat exchanger—A synergy based analysis[J]. International Journal of Heat and Mass Transfer, 2014, 74: 292-305. |
12 | XIA Shaojun, CHEN Lingen, XIE Zhihui, et al. Entransy dissipation minimization for generalized heat exchange processes[J]. Science China Technological Sciences, 2016, 59(10): 1507-1516. |
13 | YANG Yujie, LI Yanzhong, SI Biao, et al. Performance evaluation of heat transfer enhancement for offset strip fins used in plate-fin heat exchangers[J]. Journal of Heat Transfer, 2015, 137(10): 101901. |
14 | WEN Jian, LI Yanzhong, ZHOU Aimin, et al. An experimental and numerical investigation of flow patterns in the entrance of plate-fin heat exchanger[J]. International Journal of Heat and Mass Transfer, 2006, 49(5): 1667-1678. |
15 | ZHANG Zhe, MEHENDALE S, TIAN Jinjin, et al. Experimental investigation of distributor configuration on flow maldistribution in plate-fin heat exchangers[J]. Applied Thermal Engineering, 2015, 85: 111-123. |
16 | WEN Jian, LI Yanzhong. Study of flow distribution and its improvement on the header of plate-fin heat exchanger[J]. Cryogenics, 2004, 44(1): 823-831. |
17 | 张良俊, 吴静怡. 板翅式换热器研究进展[J]. 真空与低温, 2016(3): 138-142. |
ZHANG Liangjun, WU Jingyi. Research progress of plate fin heat exchanger[J]. Vacuum & Cryogenics, 2016(3): 138-142. | |
18 | RANGANAYAKULU C, LUO X, KABELAC S. The single-blow transient testing technique for offset and wavy fins of compact plate-fin heat exchangers[J]. Applied Thermal Engineering, 2017, 111: 1588-1595. |
19 | YUAN Pei, JIANG Guobao, HE Yaling, et al. Performance simulation of a two-phase flow distributor for plate-fin heat exchanger[J]. Applied Thermal Engineering, 2016, 99: 1236-1245. |
20 | GUO Lihua, QIN Feng, CHEN Jiangping, et al. Lubricant side thermal-hydraulic characteristics of steel offset strip fins with different flow angles[J]. Applied Thermal Engineering, 2008, 28(8/9): 907-914. |
21 | 李亚梅. 板翅式换热器板翅结构强度的研究[D]. 西安: 西安交通大学, 2014. |
LI Yamei. Study on the strength of wing structure of plate-fin heat exchanger[D]. Xi’an: Xi’an Jiaotong University, 2014. | |
22 | 陈长青, 沈裕浩. 低温换热器[M]. 北京: 机械工业出版社, 1993. |
CHEN Changqing, SHEN Yuhao. Cryogenic heat exchanger[M]. Beijing: China Machine Press, 1993. | |
23 | 张祉祐, 石秉三. 制冷及低温技术(上册)[M]. 北京: 机械工业出版社, 1981. |
ZHANG Zhiyou, SHI Bingsan. Refrigeration & cryogenic technique (Volume 1)[M]. Beijing: China Machine Press, 1981. | |
24 | 厉彦忠. 西安交通大学教师个人主页[EB/OL]. [2020-06-10]. . |
LI Yanzhong. Research homepage of Xi’an Jiaotong University [EB/OL]. [2020-06-10]. . | |
25 | ZHANG Zhe, LI Yanzhong. CFD simulation on inlet configuration of plate-fin heat exchangers[J]. Cryogenics, 2003, 43(12): 673-678. |
26 | WEN Jian, LI Yanzhong, ZHOU Aimin, et al. PIV experimental investigation of entrance configuration on flow maldistribution in plate-fin heat exchanger[J]. Cryogenics, 2006, 46(1): 37-48. |
27 | ZHU Yinhai, LI Yanzhong. Three-dimensional numerical simulation on the laminar flow and heat transfer in four basic fins of plate-fin heat exchangers[J]. Journal of Heat Transfer, 2008, 130(11): 111801. |
28 | 赵敏. 多组分低温流程性能匹配及多股流换热器通道排列方法研究[D]. 西安: 西安交通大学, 2013. |
ZHAO Min. Multi-component cryogenic process performance matching and multi-strand flow heat exchanger channel arrangement research[D]. Xi’an: Xi’an Jiaotong University, 2013. | |
29 | YANG Yujie, LI Yanzhong, SI Biao, et al. Analysis of the fin performance of offset strip fins used in plate-fin heat exchangers[J]. Journal of Heat Transfer, 2016, 138(10): 101801. |
30 | 厉彦忠, 司标, 贾金才, 等. 一种宽雷诺数范围板翅式换热器传热与流动性能测试装置: CN103149237[P]. 2013-07-26. |
LI Yanzhong, SI Biao, JIA Jincai, et al. The heat transfer and flow performance test device of a wide Reynolds number range plate fin heat exchanger: CN103149237[P]. 2013-07-26. | |
31 | YANG Huizhu, LI Yongyao, YANG Yujie, et al. Effect of surface efficiency on the thermal design of plate-fin heat exchangers with passages stack arrangement[J]. International Journal of Heat and Mass Transfer, 2019, 143: 118494. |
32 | LI Ke, WEN Jian, WANG Simin, et al. Multi-parameter optimization of serrated fins in plate-fin heat exchanger based on fluid-structure interaction[J]. Applied Thermal Engineering, 2020, 176: 115357. |
33 | LI Ke, WEN Jian, LIU Yuce, et al. Application of entransy theory on structure optimization of serrated fin in plate-fin heat exchanger[J]. Applied Thermal Engineering, 2020, 173: 114809. |
34 | BEJAN A, LORENTE S. Constructal law of design and evolution: physics, biology, technology, and society[J]. Journal of Applied Physics, 2013, 113(15): 151-170. |
35 | YEE T F, GROSSMANN I E, KRAVANJA Z. Simultaneous optimization models for heat integration (Ⅰ): area and energy targeting and modeling of multi-stream exchangers[J]. Computers & Chemical Engineering, 1990, 14(10): 1151-1164. |
36 | SUNDEN L W B. Design methodology for multistream plate-fin heat exchangers in heat exchanger networks[J]. Heat Transfer Engineering, 2001, 22(6): 3-11. |
37 | FRANK L M P, ZHU X X. Integrated heat exchanger network and equipment design using compact heat exchangers[J]. Heat Transfer Engineering, 2002, 23(6): 18-35. |
38 | PICÓN-NÚÑEZ M, POLLEY G T, MEDINA M. Thermal design of multi-stream heat exchangers[J]. Applied Thermal Engineering, 2002, 22(14): 1643-1660. |
39 | JODA F, TAHOUNI N, PANJESGAHI M H. Application of genetic algorithms in design and optimisation of multi-stream plate-fin heat exchangers[J]. The Canadian Journal of Chemical Engineering, 2013, 91(5): 870-881. |
40 | KAMATH R S, BIEGLER L T, GROSSMANN I E. Modeling multistream heat exchangers with and without phase changes for simultaneous optimization and heat integration[J]. AIChE Journal, 2012, 58(1): 190-204. |
41 | MONTANEZ M, JOBSON M, ZHANG N. Available online design and simulation of multistream plate-fin heat exchangers-single-phase streams[J]. Applied Thermal Engineering, 2016, 92: 172-186. |
42 | 肖武. 基于流股有效温位的大规模多流股换热器网络综合[D]. 大连: 大连理工大学, 2006. |
XIAO Wu. A Large-scale multi-strand heat exchanger network based on the effective temperature of flow stocks[D]. Dalian: Dalian University of Technology, 2006. | |
43 | ZHAO Min, LI Yanzhong. New integral-mean temperature difference model for thermal design and simulation of parallel three-fluid heat exchanger[J]. International Journal of Thermal Sciences, 2012, 59: 203-213. |
44 | 李永强, 王兵, 邹雄, 等. 基于状态空间超级结构的多流股换热网络最优设计[J]. 化工学报, 2013, 65(6): 2156-2164. |
LI Yongqiang, WANG Bing, ZOU Xiong, et al. Optimal design of multistream heat exchanger network based on state space superstructure[J]. CIESC Journal, 2013, 65(6): 2156-2164. | |
45 | 许雄文, 刘金平, 吴秋丽. 工艺条件下(1+n)多股流一维传热组织原则优化[J]. 华南理工大学学报(自然科学版), 2015 (8): 9-14. |
XU Xiongwen, LIU Jinping, WU Qiuli. Principles of heat transfer organization optimization for (1+n) multi-stream one-dimensional heat exchanger meeting process requirements[J]. Journal of South China University of Technology(Natural Science Edition), 2015(8): 9-14. | |
46 | WEBB R L. Performance evaluation criteria for use of enhanced heat transfer surfaces in heat exchanger design[J]. International Journal of Heat and Mass Transfer, 1981, 24(4): 715-726. |
47 | BEJAN A. Fundamentals of exergy analysis, entropy generation minimization, and the generation of flow architecture[J]. International Journal of Energy Research, 2002, 26(7): 1-43. |
48 | VALERO A, SERRA L, UCLE J. Fundamentals of exergy cost accounting and thermoeconomics (Ⅰ): theory[J]. Journal of Energy Resources Technology, 2006, 128(1): 1-8. |
49 | BEJAN A, LORENTE S. Constructal theory of generation of configuration in nature and engineering[J]. Journal of Applied Physics, 2006, 100(4): 041301. |
50 | GUO Zengyuan, ZHU Hongye, LIANG Xingang. Entransy—A physical quantity describing heat transfer ability[J]. International Journal of Heat and Mass Transfer, 2007, 50(13): 2545-2556. |
51 | CARLOS A R, VIVIANA C M, LEANDRO S C. Integrative numerical modeling and thermodynamic optimal design of counter-flow plate-fin heat exchanger applying neural networks[J]. International Journal of Heat and Mass Transfer, 2020, 159: 120097. |
52 | NIROOMAND R, SAIDI M H, HANNANI S K. A general multi-scale modeling framework for two-phase simulation of multi-stream plate-fin heat exchangers[J]. International Journal of Heat and Mass Transfer, 2020, 156: 119730. |
53 | HAJAVDOLLAHI H. Multi-objective optimization of plate fin heat exchanger using constructal theory[J]. International Communications in Heat and Mass Transfer, 2019, 108: 104283. |
54 | MISHRA M, DAS P K, SARANGI S K. Optimum design of crossflow plate-fin heat exchangers through genetic algorithm[J]. International Journal of Heat Exchangers, 2004, 5(2): 379-401. |
55 | XIE Gongnan, SUNDEN B, WANG Qiuwang. Optimization of compact heat exchangers by a genetic algorithm[J]. Applied Thermal Engineering, 2008, 28(8): 895-906. |
56 | YOUSEFI M, ENAYATIFAR R, DARUS A N, et al. Optimization of plate-fin heat exchangers by an improved harmony search algorithm[J]. Applied Thermal Engineering, 2013, 50(1): 877-885. |
57 | BABAELAHI M, SADRI S, SAYYAADI H. Multi-objective optimization of a cross-flow plate heat exchanger using entropy generation minimization[J]. Chemical Engineering & Technology, 2014, 37(1): 87-94. |
58 | KHOSRAVI R, KHOSRAVI A, NAHAVABDI S, et al. Effectiveness of evolutionary algorithms for optimization of heat exchangers[J]. Energy Conversion and Management, 2015, 89: 281-288. |
59 | WANG Zhe, LI Yanzhong. Irreversibility analysis for optimization design of plate fin heat exchangers using a multi-objective cuckoo search algorithm[J]. Energy Conversion and Management, 2015, 101: 126-135. |
60 | FAN Y N. How to design plate-fin exchangers[J]. Hydrocarbon Process, 1966, 11: 211-217. |
61 | WEIMER R F, HARTZOG D G. Effects of misdistribution on the performance of multistream, multipassage heat exchangers[M]. Advances in Cryogenic Engineering. Springer US, 1973: 52-64. |
62 | SUESSMANN W, MANSOUR A. Passage arrangement in plate-fin heat exchangers[C]//Proceedings of 􀃺 International Congress of Refrigeration, 1979: 421-429. |
63 | 彭波涛, 罗来勤, 王秋旺, 等. 多股流板翅式换热器的微分与优化数值研究[J]. 化工学报, 2004, 55(6): 876-881. |
PENG Botao, LUO Laiqin, WANG Qiuwang, et al. Numerical study of differential and optimal design for multi-stream plate-fin heat exchanger[J]. Journal of Chemical Industry and Engineering (China), 2004, 55(6): 876-881. | |
64 | 吕岩岩, 崔国民, 郭佳, 等. 多股流换热器设计的量纲1温差场均匀性优化因子[J]. 化工学报, 2007, 58(10): 2469-2473. |
Yanyan LYU, CUI Guomin, GUO Jia, et al. Application of temperature-difference uniformity optimization principle to path arrangement of multi-stream heat exchangers[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(10): 2469-2473. | |
65 | 郭佳. 多股流换热器通道排列优化设计研究[D]. 上海: 上海理工大学, 2009. |
GUO Jia. Optimization design of multi-stream heat exchanger layer pattern[D]. Shanghai: Shanghai University of Technology, 2009. | |
66 | 崔国民, 周霄, 赵永芹. 基于最小熵产的多股流换热器通道排列分析及设计[J]. 化工进展, 2010, 29(S1): 642-645. |
CUI Guomin, ZHOU Xiao, ZHAO Yongqin. Analysis and design of multi-strand flow heat exchanger channels based on minimum entropy production[J]. Chemical Industry and Engineering Progress, 2010, 29(S1): 642-645. | |
67 | 朱晓磊, 张勤, 孟继安, 等. 多股流换热器的耗散热阻分析[J]. 工程热物理学报, 2012, 33(12): 2140-2142. |
ZHU Xiaolei, ZHANG Qin, MENG Ji’an, et al. Analysis of entransy-dissipation-based thermal resistance on multi-stream heat exchanger[J]. Journal of Engineering Thermophysics, 2012, 33(12): 2140-2142. | |
68 | GHOSH S, GHOSH I, PRATIHAR D K, et al. Optimum stacking pattern for multi-stream plate-fin heat exchanger through a genetic algorithm[J]. International Journal of Thermal Sciences, 2011, 50(2): 214-224. |
69 | 胡云云. 遗传算法优化多股流板翅式换热器通道排列[D]. 大连: 大连理工大学, 2012. |
HU Yunyun. Optimization of channel arrangement of multi stream plate fin heat exchanger using genetic algorithm[D]. Dalian: Dalian University of Technology, 2012. | |
70 | ZHAO Min, LI Yanzhong. An effective layer pattern optimization model for multi-stream plate-fin heat exchanger using genetic algorithm[J]. International Journal of Heat and Mass Transfer, 2013, 60: 480-489. |
71 | PENG Xiang, LIU Zhenyu, QIU Chan, et al. Passage arrangement design for multi-stream plate-fin heat exchanger under multiple operating conditions[J]. International Journal of Heat and Mass Transfer, 2014, 77: 1055-1062. |
72 | WANG Zhe, LI Yanzhong. A combined method for surface selection and layer pattern optimization of a multistream plate-fin heat exchanger[J]. Applied Energy, 2016, 165: 815-827. |
73 | FOSSAS J S. Modelling of multistream LNG heat exchangers[D]. Trondheim: Norwegian University of Science and Technology, 2011. |
74 | KAKAC S, PRAMUAN A, LIU Hongtan. Heat exchangers: selection, rating, and thermal design[M]. 2nd ed. London, New York: CRC Press, 2002. |
75 | CARDENAS B, GARVEY S, KANTHARAJ B, et al. Parametric investigation of a non-constant cross sectional area air to air heat exchanger[J]. Applied Thermal Engineering, 2016, 113: 278-289. |
76 | ZOHURI B. Compact heat exchangers design for the process industry[M]//Compact Heat Exchangers. Switzerland: Springer International Publishing, 2017: 57-185. |
77 | NELLIS G F. A heat exchanger model that includes axial conduction, parasitic heat loads, and property variations[J]. Cryogenics, 2003, 43(9): 523-538. |
78 | KAO S. A systematic design approach for a multistream exchanger with interconnected wall[J]. ASME Paper, 1961, 61: 255-260. |
79 | GHOSH I, SARANGI S K, DAS P K. Simulation algorithm for multistream plate fin heat exchangers including axial conduction, heat leakage, and variable fluid property[J]. Journal of Heat Transfer, 2007, 129(7): 884-893. |
80 | GHOSH I, SARANGI S K, DAS P K. An alternate algorithm for the analysis of multistream plate fin heat exchangers[J]. International Journal of Heat and Mass Transfer, 2006, 49(17): 2889-2902. |
81 | DAS P K, GHOSH I. Thermal design of multistream plate fin heat exchangers—A state of the art review[J]. Heat Transfer Engineering, 2012, 33(4/5): 284-300. |
82 | GOYAL M, CHAKRAVARTY A, ATREY M D. Two dimensional model for multistream plate fin heat exchangers[J]. Cryogenics, 2014, 61: 70-78. |
83 | TIAN Qiqi, HE Guogeng, ZHAO Linshan, et al. Passage arrangement optimization of multi-stream plate-fin heat exchangers[J]. Applied Thermal Engineering, 2014, 73(1): 963-974. |
84 | SKAUGEN G, KOLSAKER K, WALNUM H T, et al. A flexible and robust modelling framework for multi-stream heat exchangers[J]. Computers & Chemical Engineering, 2013, 49: 95-104. |
85 | PENG Xiang, LIU Zhenyu, QIU Chan, et al. Effect of inlet flow maldistribution on the passage arrangement design of multi-stream plate-fin heat exchanger[J]. Applied Thermal Engineering, 2016, 103: 67-76. |
86 | XU Jinghua, CHEN Xiaojie, ZHANG Shuyou, et al. Thermal design of large plate-fin heat exchanger for cryogenic air separation unit based on multiple dynamic equilibriums[J]. Applied Thermal Engineering, 2016, 113: 774-790. |
87 | 康蕊, 厉彦忠, 杨宇杰, 等. 轴向导热对板翅式换热器传热性能的影响[J]. 西安交通大学学报, 2017, 51(2): 140-148. |
KANG Rui, LI Yanzhong, YANG Yujie, et al. Performance evaluation of plate-fin heat exchanger considering effect of axial heat conduction[J]. Journal of Xi’an Jiaotong University, 2017, 51(2): 140-148. | |
88 | WANG Zhe, SUNDEN B, LI Yanzhong. A novel optimization framework for designing multi-stream compact heat exchangers and associated network[J]. Applied Thermal Engineering, 2017, 116: 110-125. |
89 | WANG Zhe, HAN Fenghui, LI Yanzhong, et al. Numerical investigation on thermal performance design of cryogenic compact heat exchangers with serrated-fin channels[J]. Heat Transfer Engineering, 2020, 41(22): 1674554. |
90 | WANG Zhe, HAN Fenghui, JI Yulong, et al. Combined analysis of parameter sensitivity and exergy for natural gas liquefaction in cryogenic fuel production process[J]. Processes, 2020, 8(6): 561. |
[1] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[2] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[3] | 王晨, 白浩良, 康雪. 大功率UV-LED散热与纳米TiO2光催化酸性红26耦合系统性能[J]. 化工进展, 2023, 42(9): 4905-4916. |
[4] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[5] | 薛凯, 王帅, 马金鹏, 胡晓阳, 种道彤, 王进仕, 严俊杰. 工业园区分布式综合能源系统的规划与调度[J]. 化工进展, 2023, 42(7): 3510-3519. |
[6] | 周龙大, 赵立新, 徐保蕊, 张爽, 刘琳. 电场-旋流耦合强化多相介质分离研究进展[J]. 化工进展, 2023, 42(7): 3443-3456. |
[7] | 李蓝宇, 黄新烨, 王笑楠, 邱彤. 化工科研范式智能化转型的思考与展望[J]. 化工进展, 2023, 42(7): 3325-3330. |
[8] | 顾诗亚, 董亚超, 刘琳琳, 张磊, 庄钰, 都健. 考虑中间节点的碳捕集管路系统设计与优化[J]. 化工进展, 2023, 42(6): 2799-2808. |
[9] | 李雪, 王艳君, 王玉超, 陶胜洋. 仿生表面用于雾水收集的最新研究进展[J]. 化工进展, 2023, 42(5): 2486-2503. |
[10] | 邹银才, 李清国, 吴辉, 钟小兵, 陈咸志. 弹载相变热沉传热仿真与优化[J]. 化工进展, 2023, 42(3): 1248-1256. |
[11] | 孙潇, 朱光涛, 裴爱国. 氢液化装置产业化与研究进展[J]. 化工进展, 2023, 42(3): 1103-1117. |
[12] | 颜子涵, 陈群云, 李卓, 付融冰, 李彦伟, 吴志根. 改进型土壤破碎混拌结构的性能数值分析与优化[J]. 化工进展, 2022, 41(S1): 72-80. |
[13] | 包淼清. 苯乙烯产品的浙江制造质量标准研究[J]. 化工进展, 2022, 41(S1): 648-655. |
[14] | 向晟, 王超, 庄钰, 顾偲雯, 张磊, 都健. 变压精馏分离乙酸甲酯-甲醇-乙酸乙酯体系的设计与控制[J]. 化工进展, 2022, 41(8): 4065-4076. |
[15] | 李贵贤, 张军强, 杨勇, 范学英, 王东亮. 基于PX选择性强化的短流程甲苯甲醇甲基化PX生产新工艺[J]. 化工进展, 2022, 41(6): 2939-2947. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |