化工进展 ›› 2021, Vol. 40 ›› Issue (2): 949-958.DOI: 10.16085/j.issn.1000-6613.2020-0622
收稿日期:
2020-04-20
修回日期:
2020-06-16
出版日期:
2021-02-05
发布日期:
2021-02-09
通讯作者:
程喜全
作者简介:
焦阳(1997—),男,硕士研究生,研究方向为聚乳酸分离膜材料开发及应用。E-mail:基金资助:
Yang JIAO(), Zhixing LI, Yingjie ZHANG, Kai WANG, Xiquan CHENG()
Received:
2020-04-20
Revised:
2020-06-16
Online:
2021-02-05
Published:
2021-02-09
Contact:
Xiquan CHENG
摘要:
在绿色化学理念的引导下,可生物降解膜材料受到了广泛的关注,有望成为传统分离膜材料的补充和替代品。本文首先分析了传统的不可降解分离膜材料的现状及问题,然后综述了当前较为热门的几种可生物降解膜材料,讨论了它们的发展状况,详细介绍了它们在膜相关领域中的应用,并针对它们的局限性做出了说明并提出了一些解决方案。随后,分析了可生物降解膜材料的生物降解机理,从分子结构角度对膜材料的可生物降解性进行了说明,这将有利于剖析膜材料生物降解的本质,进而平衡膜材料在使用中的稳定性和生物降解性。最后,文章对可生物降解膜材料在发展中遇到的问题进行了展望,并指出随着研究的不断深入,可生物降解膜材料具有广阔的前景和深远的现实意义。
中图分类号:
焦阳, 李之行, 张瑛洁, 王凯, 程喜全. 可生物降解分离膜材料及其应用研究进展[J]. 化工进展, 2021, 40(2): 949-958.
Yang JIAO, Zhixing LI, Yingjie ZHANG, Kai WANG, Xiquan CHENG. Research progress on biodegradable membrane materials and their applications[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 949-958.
膜材料 | 常用品牌/型号 | 材料价格 /CNY·kg-1 | 膜类型 | 操作压力 /MPa | 通量 /L·m-2·h-1 | 分离物质 | 分离效率 /% | 操作温度 /℃ | 操作 pH | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|---|
PVDF | Solef 1015 | 约165 | 中空纤维膜 | — | 535 | 牛血清白蛋白(BSA) | 84 | — | — | [ |
PLA | Naturework 4032D | 约50 | 中空纤维膜 | 0.05~0.1 | 870.5 | 1000×10-6 BSA | 80.0 | 20 | 7 | [ |
PES | BASF E6020P | 约120 | 平板超滤膜 | 0.1 | 253.7 | 5g/L PEG20000 | 90.6 | — | — | [ |
CA | HJBN | 约100 | 平板超滤膜 | 0.15 | 183.51 | 1g/L BSA | 93.36 | 25 | 7.4 | [ |
聚酰胺(PA) | Aladdin (PIP/IPC) | 594 | 复合纳滤膜 | 0.6 | 46 | 1000×10-6 Na2SO4 | 97.1 | 25 | — | [ |
CS | 海力 | 100 | 复合纳滤膜 | 0.6 | 74.8 | 1000×10-6Na2SO4 | 93.3 | 25 | 7.4 | [ |
PAN | 台湾化纤 | 65 | 纳米纤维膜 | 重力驱动 | 11666 | 水包甲苯乳液 | >99.9 | — | — | [ |
PCL | 美国苏威 | 62 | 纳米纤维膜 | 重力驱动 | 3300 | 正己烷-水混合液 | 99.92 | — | — | [ |
表1 部分传统膜材料与可生物降解膜材料比较
膜材料 | 常用品牌/型号 | 材料价格 /CNY·kg-1 | 膜类型 | 操作压力 /MPa | 通量 /L·m-2·h-1 | 分离物质 | 分离效率 /% | 操作温度 /℃ | 操作 pH | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|---|
PVDF | Solef 1015 | 约165 | 中空纤维膜 | — | 535 | 牛血清白蛋白(BSA) | 84 | — | — | [ |
PLA | Naturework 4032D | 约50 | 中空纤维膜 | 0.05~0.1 | 870.5 | 1000×10-6 BSA | 80.0 | 20 | 7 | [ |
PES | BASF E6020P | 约120 | 平板超滤膜 | 0.1 | 253.7 | 5g/L PEG20000 | 90.6 | — | — | [ |
CA | HJBN | 约100 | 平板超滤膜 | 0.15 | 183.51 | 1g/L BSA | 93.36 | 25 | 7.4 | [ |
聚酰胺(PA) | Aladdin (PIP/IPC) | 594 | 复合纳滤膜 | 0.6 | 46 | 1000×10-6 Na2SO4 | 97.1 | 25 | — | [ |
CS | 海力 | 100 | 复合纳滤膜 | 0.6 | 74.8 | 1000×10-6Na2SO4 | 93.3 | 25 | 7.4 | [ |
PAN | 台湾化纤 | 65 | 纳米纤维膜 | 重力驱动 | 11666 | 水包甲苯乳液 | >99.9 | — | — | [ |
PCL | 美国苏威 | 62 | 纳米纤维膜 | 重力驱动 | 3300 | 正己烷-水混合液 | 99.92 | — | — | [ |
1 | 孟广耀, 陈初升, 刘卫, 等. 陶瓷膜分离技术发展30年回顾与展望[J]. 膜科学与技术, 2011, 31(3): 86-95. |
MENG Guangyao, CHEN Chusheng, LIU Wei, et al. Ceramic membrane technology: 30 years retrospect and prospect[J]. Membrane Science and Technology, 2011, 31(3): 86-95. | |
2 | 代俊明, 孙秀花, 高昌录. 共混改性法对有机分离膜影响进展[J]. 化工进展, 2019, 38(S1): 159-165. |
DAI Junming, SUN Xiuhua, GAO Changlu. Advances on effects of blending modification on organic separation membranes[J]. Chemical Industry and Engineering Progress, 2019, 38(S1): 159-165. | |
3 | 衣佳琪, 宫晓宇, 李树芬, 等. 废塑料产品处理技术研究进展[J]. 化工设计通讯, 2019, 45(7): 166-167. |
YI Jiaqi, GONG Xiaoyu, LI Shufen, et al. Research progress on processing technology of waste plastic products[J]. Chemical Engineering Design Communications, 2019, 45(7): 166-167. | |
4 | WILES D M, SCOTT G. Polyolefins with controlled environmental degradability[J]. Polymer Degradation and Stability, 2006, 91(7): 1581-1592. |
5 | 程继锋, 蒋团辉, 詹晓梅, 等. 超亲水聚偏氟乙烯中空纤维膜的制备及性能[J]. 高等学校化学学报, 2020, 41(2): 358-364. |
CHENG Jifeng, JIANG Tuanhui, ZHAN Xiaomei, et al. Preparation and properties of superhydrophilic polyvinylidene fluoride hollow fiber membrane[J]. Chemical Journal of Chinese Universities, 2020, 41(2): 358-364. | |
6 | MORIYA A, MARUYAMA T, OHMUKAI Y, et al. Preparation of poly(lactic acid) hollow fiber membranes via phase separation methods[J]. Journal of Membrane Science, 2009, 342(1): 307-312. |
7 | 赵津礼, 王建友, 张玉忠. 新型聚醚砜-磺化聚醚砜共混膜的性能研究[J]. 水处理技术, 2019, 45(6): 38-42, 47. |
ZHAO Jinli, WANG Jianyou, ZHANG Yuzhong. Research on the properties of the novel polyethersulfone/sulfonated polyethersulfone blended membranes[J]. Technology of Water Treatment, 2019, 45(6): 38-42, 47. | |
8 | YANG Shujuan, ZOU Qinfeng, WANG Tianhao, et al. Effects of GO and MOF@GO on the permeation and antifouling properties of cellulose acetate ultrafiltration membrane[J]. Journal of Membrane Science, 2019, 569: 48-59. |
9 | GONG Yuqiong, GAO Shoujian, TIAN Yangyang, et al. Thin-film nanocomposite nanofiltration membrane with an ultrathin polyamide/UIO-66-NH2 active layer for high-performance desalination[J]. Journal of Membrane Science, 2020, 600: 117874. |
10 | ZHAO Guobiao, HAO Yufan, HE Benqiao, et al. A chitosan-separation-layer nanofiltration membrane prepared through homogeneous hybrid and copper ion enhancement[J]. Separation and Purification Technology, 2020, 234: 116084. |
11 | HE Bing, DING Yajie, WANG Jianqiang, et al. Sustaining fouling resistant membranes: Membrane fabrication, characterization and mechanism understanding of demulsification and fouling-resistance[J]. Journal of Membrane Science, 2019, 581: 105-113. |
12 | ZHANG Guohui, WANG Panpan, ZHANG Xiaoxiao, et al. The preparation of PCL/MSO/SiO2 hierarchical superhydrophobic mats for oil-water separation by one-step method[J]. European Polymer Journal, 2019, 116: 386-393. |
13 | SHIBATA T. Cellulose acetate in separation technology[J]. Macromolecular Symposia, 2004, 208(1):353-370. |
14 | 梅洁, 陈家楠, 欧义芳. 醋酸纤维素的现状与发展趋势[J]. 纤维素科学与技术, 1999(4): 56-62. |
MEI Jie, CHEN Jianan, Yifang OU. The present and future trend of cellulose acetate[J]. Journal of Cellulose Science and Technology, 1999(4): 56-62. | |
15 | 陈家楠. 纤维素化学的现状与发展趋势[J]. 纤维素科学与技术, 1995(1): 1-10. |
CHEN Jianan. The present and future trend of cellulose chemistry[J]. Journal of Cellulose Science and Technology, 1995(1): 1-10. | |
16 | GALIANO F, BRICENO K, MARINO T, et al. Advances in biopolymer-based membrane preparation and applications[J]. Journal of Membrane Science, 2018, 564: 562-586. |
17 | SANAEEPUR H, AHMADI R, SINAEI M, et al. Pebax-modified cellulose acetate membrane for CO2/N2 separation[J]. Journal of Membrane Science and Research, 2019, 5(1): 25-32. |
18 | YANG Shujuan, WANG Tianhao, TANG Rong, et al. Enhanced permeability, mechanical and antibacterial properties of cellulose acetate ultrafiltration membranes incorporated with lignocellulose nanofibrils[J]. International Journal of Biological Macromolecules, 2020, 151: 159-167. |
19 | ETEMADI H, MOTAMED M, YEGANI R. Comparative study between aeration rate and membrane modification effects on antifouling properties of cellulose acetate membrane in-membrane bioreactor systems[J]. Desalination and Water Treatment, 2019, 171: 67-77. |
20 | 杜予民. 甲壳素化学与应用的新进展[J]. 武汉大学学报(自然科学版), 2000, 146(2): 181-186. |
DU Yumin. Recent Developement of chemistry and application on chitin and chitosan[J]. Journal of Wuhan University(Natural Science Edition), 2000, 146(2): 181-186. | |
21 | RINAUDO M. Chitin and chitosan: properties and applications[J]. Progress in Polymer Science, 2006, 31(7): 603-632. |
22 | 秦振平, 孙冰洋, 郭春禹, 等. 壳聚糖多孔膜制备及其多功能分离性能研究[J]. 膜科学与技术, 2019, 39(1): 48-53. |
QIN Zhenping, SUN Bingyang, GUO Chunyu, et al. Research on fabrication of chitosan porous membrane and its multifunctional separation performance[J]. Membrane Science and Technology, 2019, 39(1): 48-53. | |
23 | THOMAS M S, PILLAI P K S, FARIA M, et al. Polylactic acid/nano chitosan composite fibers and their morphological, physical characterization for the removal of cadmium(Ⅱ) from water[J]. Journal of Applied Polymer Science, 2020, 137: 48993. |
24 | DUSSELIER M, WOUWE P VAN, DEWAELE A, et al. Shape-selective zeolite catalysis for bioplastics production[J]. Science, 2015, 349(6243): 78-80. |
25 | TANAKA T, LLOYD D R. Formation of poly(L-lactic acid) microfiltration membranes via thermally induced phase separation[J]. Journal of Membrane Science, 2004, 238(1): 65-73. |
26 | SAWALHA H, SCHROEN K, BOOM R. Polylactide films formed by immersion precipitation: effects of additives, nonsolvent, and temperature[J]. Journal of Applied Polymer Science, 2007, 104(2): 959-971. |
27 | DE WITTE P VAN, ESSELBRUGGE H, DIJKSTRA P J, et al. A morphological study of membranes obtained from the systems polylactide-dioxane-methanol, polylactide-dioxane-water, and polylactide-N-methyl pyrrolidone-water[J]. Journal of Polymer Science Part B: Polymer Physics, 1996, 34(15): 2569-2578. |
28 | DE WITTE P VAN, ESSELBRUGGE H, DIJKSTRA P J, et al. Phase transitions during membrane formation of polylactides.1. A morphological study of membranes obtained from the system polylactide-chloroform-methanol[J]. Journal of Membrane Science, 1996, 113(2): 223-236. |
29 | TANAKA T, NISHIMOTO T, TSUKAMOTO K, et al. Formation of depth filter microfiltration membranes of poly(L-lactic acid) via phase separation[J]. Journal of Membrane Science, 2012, 396: 101-169. |
30 | 高爱林, 刘富, 薛立新. 生物基聚乳酸微孔膜的制备及透析性能[J]. 膜科学与技术, 2013, 33(4): 28-34. |
GAO Ailin, LIU Fu, XUE Lixin. Preparation and characterization of poly(L-lactic acid) microporous membrane for dialysis[J]. Membrane Science and Technology, 2013, 33(4): 28-34. | |
31 | CHITRATTHA S, PHAECHAMUD T. Modifying poly(L-lactic acid) matrix film properties with high loaded poly(ethylene glycol)[J]. Key Engineering Materials, 2013, 545: 57-62. |
32 | GAO Ailin, LIU Fu, SHI Huyan, et al. Controllable transition from finger-like pores to inter-connected pores of PLLA membranes[J]. Journal of Membrane Science, 2015, 478: 96-104. |
33 | MINBU H, OCHIAI A, KAWASE T, et al. Preparation of poly(L-lactic acid) microfiltration membranes by a nonsolvent-induced phase separation method with the aid of surfactants[J]. Journal of Membrane Science, 2015, 479: 85-94. |
34 | XIAO Chuanmin, XIAO Changfa, CHEN Mingxing, et al. Study on structure and properties of tubular braid-reinforced poly(lactic acid) (PLA) hollow fiber membranes[J]. Desalination and Water Treatment, 2019, 161: 116-125. |
35 | ZHANG Zhengmin, GAN Ziqi, BAO Ruiying, et al. Green and robust superhydrophilic electrospun stereocomplex polylactide membranes: Multifunctional oil/water separation and self-cleaning[J]. Journal of Membrane Science, 2020, 593: 117420. |
36 | LIU Lejing, YUAN Weizhong. A hierarchical functionalized biodegradable PLA electrospun nanofibrous membrane with superhydrophobicity and antibacterial properties for oil/water separation[J]. New Journal of Chemistry, 2018, 42(21): 17615-17624. |
37 | 姜郁. 基于聚乳酸和醋酸纤维素可降解超滤膜的制备及研究[D]. 吉林: 长春工业大学, 2019. |
JIANG Yu. Preparation and properties of degradable ultrafiltration membrane based on PLA and CA[D]. Jilin: Changchun University of Technology, 2019. | |
38 | LARRAÑAGA A, LIZUNDIA E. A review on the thermomechanical properties and biodegradation behaviour of polyesters[J]. European Polymer Journal, 2019, 121: 109296. |
39 | FULLER K P, GASPAR D, DELGADO L M, et al. Influence of porosity and pore shape on structural, mechanical and biological properties of poly ε-caprolactone electro-spun fibrous scaffolds[J]. Nanomedicine, 2016, 11(9): 1031-1040. |
40 | PALACIOS H H, URENA-SABORIO H, ZURITA F, et al. Nanocellulose and polycaprolactone nanospun composite membranes and their potential for the removal of pollutants from water[J]. Molecules, 2020, 25(3): 683-696. |
41 | ÁNGEL-SANCHEZ K DEL, BORBOLLA-TORRES C I, PALACIOS-PINEDA L M, et al. Development, fabrication, and characterization of composite polycaprolactone membranes reinforced with TiO2 nanoparticles[J]. Polymers, 2019, 11(12): 1955-1979. |
42 | ZHANG Xiaoxiao, ZHAO Jie, MA Liang, et al. Biomimetic preparation of a polycaprolactone membrane with a hierarchical structure as a highly efficient oil-water separator[J]. Journal of Materials Chemistry A, 2019, 7(42): 24532-24542. |
43 | SONG J H, MURPHY R J, NARAYAN R, et al. Biodegradable and compostable alternatives to conventional plastics[J]. Philosophical Transactions of Biological Sciences, 2009, 364(1526): 2127-2139. |
44 | 杜江华, 杨青芳, 范晓东, 等. 多级结构PHB基电纺纤维膜的制备及性能研究[J]. 合成纤维工业, 2016, 39(3): 26-29. |
DU Jianghua, YANG Qingfang, FAN Xiaodong, et al. Preparation and properties of electrospun PHB fiber mats with multilevel structure[J]. China Synthetic Fiber Industry, 2016, 39(3): 26-29. | |
45 | 张波波. 聚羟基丁酸酯/纳米纤维素复合薄膜的制备与性能研究[D]. 南宁: 广西大学, 2019. |
ZHANG Bobo. Preparation and properties of nanocellulose/polyhydroxybutyrate composite films[D]. Nanning: Guangxi University, 2019. | |
46 | LIN Xinghuan, LI Shanshan, JUNG Joonhoo, et al. PHB/PCL fibrous membranes modified with SiO2@TiO2-based core@shell composite nanoparticles for hydrophobic and antibacterial applications[J]. RSC Advances, 2019, 9(40): 23071-23080. |
47 | MOK C F, CHING Y C, MUHAMAD F, et al. Adsorption of dyes using poly(vinyl alcohol) (PVA) and PVA-based polymer composite adsorbents: a review[J]. Journal of Polymers and the Environment, 2020, 28(3): 775-793. |
48 | NASCIMENTO F C DO, DE AGUIAR L C V, COSTA L A T, et al. Formulation and characterization of crosslinked polyvinyl alcohol (PVA) membranes: effects of the crosslinking agents[J]. Polymer Bulletin, 2021, 78: 917-929. |
49 | DUDEK G, TURCZYN R, KONIECZNY K. Robust poly(vinyl alcohol) membranes containing chitosan/chitosan derivatives microparticles for pervaporative dehydration of ethanol[J]. Separation and Purification Technology, 2020, 234: 116094. |
50 | PORNEA A M, PUGUAN J M C, DEONIKAR V G, et al. Robust Janus nanocomposite membrane with opposing surface wettability for selective oil-water separation[J]. Separation and Purification Technology, 2020, 236: 116297. |
51 | DAVE H K, NATH K. Sorption and diffusion phenomena in pervaporative dehydration of acetic acid through a PVA-PES composite membrane[J]. Journal of Scientific and Industrial Research, 2018, 77(2): 98-103. |
52 | LI Xipeng, SHAN Huiting, ZHANG Wei, et al. 3D printed robust superhydrophilic and underwater superoleophobic composite membrane for high efficient oil/water separation[J]. Separation and Purification Technology, 2020, 237:116324. |
53 | BIMALI KOONGOLLA J, ANDRADY A L, TERNEY PRADEEP KUMARA P B, et al. Evidence of microplastics pollution in coastal beaches and waters in southern Sri Lanka[J]. Marine Pollution Bulletin, 2018, 137: 277-284. |
54 | SCAFFARO R, MAIO A, SUTERA F, et al. Degradation and recycling of films based on biodegradable polymers: a short review[J]. Polymers, 2019, 11(4): 651-671. |
55 | BRANNIGAN R P, DOVE A P. Synthesis, properties and biomedical applications of hydrolytically degradable materials based on aliphatic polyesters and polycarbonates[J]. Biomaterials Science, 2017, 5(1): 9-21. |
56 | HAKKARAINEN M. Aliphatic polyesters: a biotic and biotic degradation and degradation products[J]. Degradable Aliphatic Polyesters, 2002, 157: 113-138. |
57 | HAN Xiaoxiao, PAN Jingzhe. A model for simultaneous crystallisation and biodegradation of biodegradable polymers[J]. Biomaterials, 2009, 30: 423-430. |
58 | 陈海燕, 吴丰昌, 魏源, 等. 生物基聚合物PHBV和PLA复合材料在不同介质中的生物降解及其影响因素[J]. 中国环境科学, 2018, 38(7): 2706-2713. |
CHEN Haiyan, WU Fengchang, WEI Yuan, et al. Biodegradation of biologically based polymer PHBV and PLA composites in different media and its influencing factors[J]. China Environmental Science, 2018, 38(7): 2706-2713. | |
59 | ZOU Fangdong, SUN Xiaoxia, WANG Xinhou. Elastic, hydrophilic and biodegradable poly(1,8-octanediol-co-citricacid)/polylactic acid nanofifibrous membranes for potential wound dressing applications[J]. Polymer Degradation and Stability, 2019, 166: 163-173. |
60 | HAIDER T P, VOLKER C, KRAMM J, et al. Plastics of the future? The impact of biodegradable polymers on the environment and on society[J]. Angewandte Chemie: International Edition, 2019, 58(1): 50-62. |
[1] | 张祚群, 高扬, 白超杰, 薛立新. 二次界面聚合同步反扩散原位生长ZIF-8纳米粒子制备聚酰胺混合基质反渗透(RO)膜[J]. 化工进展, 2023, 42(S1): 364-373. |
[2] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[3] | 李世霖, 胡景泽, 王毅霖, 王庆吉, 邵磊. 电渗析分离提取高值组分的研究进展[J]. 化工进展, 2023, 42(S1): 420-429. |
[4] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[5] | 贺美晋. 分子管理在炼油领域分离技术中的应用和发展趋势[J]. 化工进展, 2023, 42(S1): 260-266. |
[6] | 廖志新, 罗涛, 王红, 孔佳骏, 申海平, 管翠诗, 王翠红, 佘玉成. 溶剂脱沥青技术应用与进展[J]. 化工进展, 2023, 42(9): 4573-4586. |
[7] | 葛全倩, 徐迈, 梁铣, 王凤武. MOFs材料在光电催化领域应用的研究进展[J]. 化工进展, 2023, 42(9): 4692-4705. |
[8] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[9] | 邵志国, 任雯, 许世佩, 聂凡, 许毓, 刘龙杰, 谢水祥, 李兴春, 王庆吉, 谢加才. 终温对油基钻屑热解产物分布和特性影响[J]. 化工进展, 2023, 42(9): 4929-4938. |
[10] | 朱传强, 茹晋波, 孙亭亭, 谢兴旺, 李长明, 高士秋. 固体高分子脱硝剂选择性非催化还原NO x 特性[J]. 化工进展, 2023, 42(9): 4939-4946. |
[11] | 李雪佳, 李鹏, 李志霞, 晋墩尚, 郭强, 宋旭锋, 宋芃, 彭跃莲. 亲水和疏水改性膜的抗结垢和润湿能力的对比[J]. 化工进展, 2023, 42(8): 4458-4464. |
[12] | 李伯耿, 罗英武, 刘平伟. 聚合物产品工程研究内容与方法的思考[J]. 化工进展, 2023, 42(8): 3905-3909. |
[13] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[14] | 高聪, 陈城虎, 陈修来, 刘立明. 代谢工程改造微生物合成生物基单体的进展与挑战[J]. 化工进展, 2023, 42(8): 4123-4135. |
[15] | 杨静, 李博, 李文军, 刘晓娜, 汤刘元, 刘月, 钱天伟. 焦化污染场地中萘降解菌的分离及降解特性[J]. 化工进展, 2023, 42(8): 4351-4361. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |