化工进展 ›› 2021, Vol. 40 ›› Issue (2): 932-948.DOI: 10.16085/j.issn.1000-6613.2020-0612
吴振威(), 李伟, 鄂雷, 孙佳明, 刘禹衫, 刘守新()
收稿日期:
2020-04-20
修回日期:
2020-06-13
出版日期:
2021-02-05
发布日期:
2021-02-09
通讯作者:
刘守新
作者简介:
吴振威(1996—),男,博士研究生,研究方向水热软模板法制备有序介孔炭球。E-mail:基金资助:
Zhenwei WU(), Wei LI, Lei E, Jiaming SUN, Yushan LIU, Shouxin LIU()
Received:
2020-04-20
Revised:
2020-06-13
Online:
2021-02-05
Published:
2021-02-09
Contact:
Shouxin LIU
摘要:
介孔炭球兼具炭材料以及球状胶体的优点,即优异的流动性、分散性、导电性以及可调控的孔径大小和粒径尺寸,使其在生物、催化、吸附分离和电化学等领域展示出良好应用前景。近年来,水热-软模板法作为一种有效的制备介孔炭球的方法被广泛报道,它通过水热实现球形结构的控制并借助软模板实现对介孔的调控。本文综述了水热-软模板法制备介孔炭球的最新进展,包括其结构与形貌的调控、改性和其应用。对如何选取碳源、软模板和溶剂等问题进行了总结并展望了其在各应用中的发展方向。
中图分类号:
吴振威, 李伟, 鄂雷, 孙佳明, 刘禹衫, 刘守新. 水热-软模板法制备介孔炭球及其应用[J]. 化工进展, 2021, 40(2): 932-948.
Zhenwei WU, Wei LI, Lei E, Jiaming SUN, Yushan LIU, Shouxin LIU. Preparation and applications of mesoporous carbon spheres via combination of hydrothermal and soft-templating[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 932-948.
碳源 | 模板 | 催化剂 | 水热温度 /℃ | 水热时间 /h | 形貌 | 改性 | 应用 | 参考 文献 |
---|---|---|---|---|---|---|---|---|
间苯二酚和甲醛 | F127 | HCl | 150 | 10 | 实心 | Se | 锂电池 | [ |
间苯二酚和甲醛 | F127、FC4 | HCl | 100 | 24 | 实心 | N | 氧还原反应 | [ |
间苯二酚和甲醛 | F127 | HCl | 120 | 12 | 实心 | Fe、N | 氧还原反应 | [ |
间苯二酚和甲醛 | F127 | NaOH | 180 | 4 | 实心 | — | 超级电容器 | [ |
间苯二酚和甲醛 | CTAB | NH4OH | 100 | 24 | 壳核 | N | 直接甲醇燃料电池 | [ |
间苯二酚和甲醛 | CTAB | NH4OH | 100 | 24 | 壳核 | — | 超级电容器 | [ |
间苯二酚和甲醛 | CTAB | NH4OH | 80 | 24 | 中空 | — | 超级电容器 | [ |
酚醛树脂 | F127 | NaOH | 130 | 10 | 实心 | Fe3O4 | 锂电池 | [ |
酚醛树脂 | F127 | NaOH | 130 | 24 | 实心 | — | 细胞透性 | [ |
三聚氰胺、间苯二酚和甲醛 | F127 | NaOH | 180 | 7 | 实心 | N、石墨烯 | 超级电容器 | [ |
三聚氰胺、间苯二酚和甲醛 | CTAC | NH4OH | 100 | 24 | 壳核 | N | 超级电容器 | [ |
2,4-二羟基苯甲酸和甲醛 | 油酸 | NH4OH | 100~160 | 4 | 中空 | Fe、Ag | 催化 | [ |
2,4-二羟基苯甲酸和甲醛 | 油酸钠 | NH4OH | 140 | 4 | 壳核 | Cu | 催化 | [ |
2,4-二羟基苯甲酸和环六亚甲基四氨 | P123和油酸钠 | NH4+ | 160 | 2 | 中空 | Pt、Co | 催化 | [ |
2,4-二羟基苯甲酸和环六亚甲基四氨 | P123和油酸钠 | NH4+ | 160 | 5 | 壳核 | Pd | 催化 | [ |
2,4-二羟基苯甲酸和环六亚甲基四氨 | P123和油酸钠 | NH4+ | 160 | 8 | 中空 | Fe、N | 氧还原反应 | [ |
2,4-二羟基苯甲酸和环六亚甲基四氨 | P123和油酸钠 | NH4+ | 160 | 8 | 中空 | N、石墨烯 | 氧还原反应 | [ |
葡萄糖 | SDS | — | 250 | 5 | 中空 | Ni | 析氢反应 | [ |
D-果糖 | F127 | — | 130 | 24 | 实心 | — | 超级电容器 | [ |
α-环糊精 | F127 | — | 200 | 6 | 壳核 | — | 锂电池 | [ |
表1 不同原料及制备条件制得的介孔炭球的性质与应用
碳源 | 模板 | 催化剂 | 水热温度 /℃ | 水热时间 /h | 形貌 | 改性 | 应用 | 参考 文献 |
---|---|---|---|---|---|---|---|---|
间苯二酚和甲醛 | F127 | HCl | 150 | 10 | 实心 | Se | 锂电池 | [ |
间苯二酚和甲醛 | F127、FC4 | HCl | 100 | 24 | 实心 | N | 氧还原反应 | [ |
间苯二酚和甲醛 | F127 | HCl | 120 | 12 | 实心 | Fe、N | 氧还原反应 | [ |
间苯二酚和甲醛 | F127 | NaOH | 180 | 4 | 实心 | — | 超级电容器 | [ |
间苯二酚和甲醛 | CTAB | NH4OH | 100 | 24 | 壳核 | N | 直接甲醇燃料电池 | [ |
间苯二酚和甲醛 | CTAB | NH4OH | 100 | 24 | 壳核 | — | 超级电容器 | [ |
间苯二酚和甲醛 | CTAB | NH4OH | 80 | 24 | 中空 | — | 超级电容器 | [ |
酚醛树脂 | F127 | NaOH | 130 | 10 | 实心 | Fe3O4 | 锂电池 | [ |
酚醛树脂 | F127 | NaOH | 130 | 24 | 实心 | — | 细胞透性 | [ |
三聚氰胺、间苯二酚和甲醛 | F127 | NaOH | 180 | 7 | 实心 | N、石墨烯 | 超级电容器 | [ |
三聚氰胺、间苯二酚和甲醛 | CTAC | NH4OH | 100 | 24 | 壳核 | N | 超级电容器 | [ |
2,4-二羟基苯甲酸和甲醛 | 油酸 | NH4OH | 100~160 | 4 | 中空 | Fe、Ag | 催化 | [ |
2,4-二羟基苯甲酸和甲醛 | 油酸钠 | NH4OH | 140 | 4 | 壳核 | Cu | 催化 | [ |
2,4-二羟基苯甲酸和环六亚甲基四氨 | P123和油酸钠 | NH4+ | 160 | 2 | 中空 | Pt、Co | 催化 | [ |
2,4-二羟基苯甲酸和环六亚甲基四氨 | P123和油酸钠 | NH4+ | 160 | 5 | 壳核 | Pd | 催化 | [ |
2,4-二羟基苯甲酸和环六亚甲基四氨 | P123和油酸钠 | NH4+ | 160 | 8 | 中空 | Fe、N | 氧还原反应 | [ |
2,4-二羟基苯甲酸和环六亚甲基四氨 | P123和油酸钠 | NH4+ | 160 | 8 | 中空 | N、石墨烯 | 氧还原反应 | [ |
葡萄糖 | SDS | — | 250 | 5 | 中空 | Ni | 析氢反应 | [ |
D-果糖 | F127 | — | 130 | 24 | 实心 | — | 超级电容器 | [ |
α-环糊精 | F127 | — | 200 | 6 | 壳核 | — | 锂电池 | [ |
图14 (a)FeNCS-1000的SEM图(插图为中空球体的壳厚分布以及中空石墨球的示意图);(b)FeNCS-1000的TEM图;(c)单个无Fe掺杂的NHCS颗粒的TEM图;(d)FeNCSs和其他对照样品在O2饱和的0.1mol·L-1 KOH溶液;(e)O2饱和的0.5mol·L-1 H2SO4溶液中的RDE伏安图(转速1600r·min-1;扫速10mV·s-1)[35]
102 | PRIETO G, TÜYSÜZ H, DUYCKAERTS N, et al. Hollow nano- and microstructures as catalysts[J]. Chemical Reviews, 2016, 116(22): 14056-14119. |
103 | 赵东江, 马松艳, 田喜强, 等. 掺杂有序介孔炭氧还原电催化剂的研究进展[J]. 炭素技术, 2018, 37(2): 1-7. |
ZHAO Dongjiang, MA Songyan, TIAN Xiqiang, et al. Recent progress in doped ordered mesoporous carbons as electrocatalysts for oxygen reduction[J]. Carbon Techniques, 2018, 37(2): 1-7. | |
104 | FANG Yin, ZHENG Gengfeng, YANG Jianping, et al. Dual-pore mesoporous carbon@silica composite core-shell nanospheres for multidrug delivery[J]. Angewandte Chemie: International Edition, 2014, 53(21): 5366-5370. |
105 | VINU A, HOSSIAN K Z, SRINIVASU P, et al. Carboxy-mesoporous carbon and its excellent adsorption capability for proteins[J]. Journal of Materials Chemistry, 2007, 17(18): 1819-1825. |
106 | LI Chengyi, MENG Ying, WANG Shanshan, et al. Mesoporous carbon nanospheres featured fluorescent aptasensor for multiple diagnosis of cancer in vitro and in vivo[J]. ACS Nano, 2015, 9(12): 12096-12103. |
107 | ZHANG Amin, PAN Shaojun, ZHANG Yuhui, et al. Carbon-gold hybrid nanoprobes for real-time imaging, photothermal/photodynamic and nanozyme oxidative therapy[J]. Theranostics, 2019, 9(12): 3443-3458. |
108 | WANG Huan, LI Xiangui, MA Zhiqiang, et al. Hydrophilic mesoporous carbon nanospheres with high drug-loading efficiency for doxorubicin delivery and cancer therapy[J]. International Journal of Nanomedicine, 2016, 11: 1793-1806. |
1 | 李鹏刚, 王靖轩, 郭飞飞, 等. 介孔碳的研究进展及应用[J]. 化工进展, 2018, 37(1): 149-158. |
LI Penggang, WANG Jingxuan, GUO Feifei, et al. Recent progress in the synthesis and applications of mesoporous carbon materials[J]. Chemical Industry and Engineering Progress, 2018, 37(1): 149-158. | |
109 | Ji Hoon LEE, Hyeon Jeong LEE, Soo Yeon LIM, et al. Combined CO2-philicity and ordered mesoporosity for highly selective CO2 capture at high temperatures[J]. Journal of the American Chemical Society, 2015, 137(22): 7210-7216. |
2 | 吴冰峰, 杨丽娜, 李剑, 等. 生物质模板剂制备介孔材料研究进展[J]. 化工进展, 2018, 37(7): 2686-2693. |
WU Bingfeng, YANG Lina, LI Jian, et al. Application of biomass templates in the preparation of mesoporous materials[J]. Chemical Industry and Engineering Progress, 2018, 37(7): 2686-2693. | |
3 | XIN Wang, SONG Yonghui. Mesoporous carbons: recent advances in synthesis and typical applications[J]. RSC Advances, 2015, 5(101): 83239-83285. |
4 | 何天稀, 王文斌, 王九, 等. 介孔碳球的制备及作为药物传输系统的应用[J]. 化学进展, 2020, 32(2/3): 309-319. |
HE Tianxi, WANG Wenbin, WANG Jiu, et al. Mesoporous carbon spheres: synthesis and applications in drug delivery system[J]. Progress in Chemistry, 2020, 32(2/3): 309-319. | |
5 | WICKRAMARATNE N P, XU Jiantie, WANG Min, et al. Nitrogen enriched porous carbon spheres: attractive materials for supercapacitor electrodes and CO2 adsorption[J]. Chemistry of Materials, 2014, 26(9): 2820-2828. |
6 | FU Tingjun, WANG Xia, ZHENG Huayan, et al. Effect of Cu location and dispersion on carbon sphere supported Cu catalysts for oxidative carbonylation of methanol to dimethyl carbonate[J]. Carbon, 2017, 115: 363-374. |
7 | ZHANG Xiue, ZHAO Rongfang, WU Qianhui, et al. Petal-like MoS2 nanosheets space-confined in hollow mesoporous carbon spheres for enhanced lithium storage performance[J]. ACS Nano, 2017, 11(8): 8429-8436. |
8 | MA Xiaomei, GAN Lihua, LIU Mingxian, et al. Mesoporous size controllable carbon microspheres and their electrochemical performances for supercapacitor electrodes[J]. Journal of Materials Chemistry A, 2014, 2(22): 8407-8415. |
9 | LIU Tao, ZHANG Liuyang, YOU Wei, et al. Core-shell nitrogen-doped carbon hollow spheres/Co3O4 nanosheets as advanced electrode for high-performance supercapacitor[J]. Small, 2018, 14(12): 1702407. |
10 | LU Shiyao, ZHU Tianxiang, WU Hu, et al. Construction of ultrafine ZnSe nanoparticles on/in amorphous carbon hollow nanospheres with high-power-density sodium storage[J]. Nano Energy, 2019, 59: 762-772. |
11 | JIA Baorui, QIN Mingli, ZHANG Zili, et al. One-pot synthesis of Cu-carbon hybrid hollow spheres[J]. Carbon, 2013, 62: 472-480. |
12 | LI Sijin, PASC A, FIERRO V, et al. Hollow carbon spheres, synthesis and applications-a review[J]. Journal of Materials Chemistry A, 2016, 4(33): 12686-12713. |
13 | QU Yaohui, ZHANG Zhian, WANG Xiwen, et al. A simple SDS-assisted self-assembly method for the synthesis of hollow carbon nanospheres to encapsulate sulfur for advanced lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2013, 1(45): 14306-14310. |
14 | MA Tianyi, LIU Lei, YUAN Zhongyong. Direct synthesis of ordered mesoporous carbons[J]. Chemical Society Reviews, 2013, 42(9): 3977-4003. |
15 | YANG Zhengchun, TANG Chunhua, GONG Hao, et al. Hollow spheres of nanocarbon and their manganese dioxide hybrids derived from soft template for supercapacitor application[J]. Journal of Power Sources, 2013, 240: 713-720. |
16 | HU Bo, WANG Kan, WU Liheng, et al. Engineering carbon materials from the hydrothermal carbonization process of biomass[J]. Advanced Materials, 2010, 22(7): 813-828. |
17 | HUANG Yan, CAI Huaqiang, FENG Dan, et al. One-step hydrothermal synthesis of ordered mesostructured carbonaceous monoliths with hierarchical porosities[J]. Chemical Communications, 2008, 23: 2641-2643. |
18 | LIU Lei, WANG Fengyun, SHAO Gaosong, et al. A low-temperature autoclaving route to synthesize monolithic carbon materials with an ordered mesostructure[J]. Carbon, 2010, 48(7): 2089-2099. |
19 | ZHANG Pengfei, QIAO Zhen’an, DAI Sheng. Recent advances in carbon nanospheres: synthetic routes and applications[J]. Chemical Communications, 2015, 51(45): 9246-9256. |
20 | LUO Chao, XU Yunhua, ZHU Yujie, et al. Selenium@mesoporous carbon composite with superior lithium and sodium storage capacity[J]. ACS Nano, 2013, 7(9): 8003-8010. |
21 | BAYATSARMADI B, ZHENG Yao, JARONIEC M, et al. Soft-templating synthesis of N-doped mesoporous carbon nanospheres for enhanced oxygen reduction reaction[J]. Chemistry: an Asian Journal, 2015, 10(7): 1546-1553. |
22 | WEI Jing, LIANG Yan, ZHANG Xinyi, et al. Controllable synthesis of mesoporous carbon nanospheres and Fe-N/carbon nanospheres as efficient oxygen reduction electrocatalysts[J]. Nanoscale, 2015, 7(14): 6247-6254. |
23 | LI Meng, XUE Junmin. Ordered mesoporous carbon nanoparticles with well-controlled morphologies from sphere to rod via a soft-template route[J]. Journal of Colloid and Interface Science, 2012, 377(1): 169-175. |
24 | SHU Chengyong, SONG Bo, WEI Xuedong, et al. Mesoporous 3D nitrogen-doped yolk-shelled carbon spheres for direct methanol fuel cells with polymer fiber membranes[J]. Carbon, 2018, 129: 613-620. |
25 | WANG Jinxiu, FENG Shanshan, SONG Yanfang, et al. Synthesis of hierarchically porous carbon spheres with yolk-shell structure for high performance supercapacitors[J]. Catalysis Today, 2015, 243: 199-208. |
26 | HOU Jianhua, CAO Tai, IDREES F, et al. A co-sol-emulsion-gel synthesis of tunable and uniform hollow carbon nanospheres with interconnected mesoporous shells[J]. Nanoscale, 2016, 8(1): 451-457. |
27 | CHEN Yu, SONG Bohang, LI Meng, et al. Fe3O4 nanoparticles embedded in uniform mesoporous carbon spheres for superior high- rate battery applications[J]. Advanced Functional Materials, 2014, 24(3): 319-326. |
28 | FANG Yin, GU Dong, ZOU Ying, et al. A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size[J]. Angewandte Chemie: International Edition, 2010, 49(43): 7987-7991. |
29 | LI Meng, XUE Junmin. Integrated synthesis of nitrogen-doped mesoporous carbon from melamine resins with superior performance in supercapacitors[J]. The Journal of Physical Chemistry C, 2014, 118(5): 2507-2517. |
30 | LIU Chao, WANG Jing, LI Jiansheng, et al. Synthesis of N-doped hollow-structured mesoporous carbon nanospheres for high-performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2016, 8(11): 7194-7204. |
31 | WANG Guanghui, SUN Qiang, ZHANG Rong, et al. Weak acid-base interaction induced assembly for the synthesis of diverse hollow nanospheres[J]. Chemistry of Materials, 2011, 23(20): 4537-4542. |
32 | HAO Panpan, REN Jun, YANG Leilei, et al. Direct and generalized synthesis of carbon-based yolk-shell nanocomposites from metal-oleate precursor[J]. Chemical Engineering Journal, 2016, 283: 1295-1304. |
33 | WANG Guanghui, HILGERT J, RICHTER F H, et al. Platinum-cobalt bimetallic nanoparticles in hollow carbon nanospheres for hydrogenolysis of 5-hydroxymethylfurfural[J]. Nature Materials, 2014, 13(3): 293-300. |
34 | WANG Guanghui, CHEN Kun, ENGELHARDT J, et al. Scalable one-pot synthesis of yolk-shell carbon nanospheres with yolk-supported Pd nanoparticles for size-selective catalysis[J]. Chemistry of Materials, 2018, 30(8): 2483-2487. |
35 | ZHOU Tingsheng, ZHOU Yao, MA Ruguang, et al. Achieving excellent activity and stability for oxygen reduction electrocatalysis by hollow mesoporous iron-nitrogen-doped graphitic carbon spheres[J]. Journal of Materials Chemistry A, 2017, 5(24): 12243-12251. |
36 | MA Ruguang, XING Ruohao, LIN Gaoxin, et al. Graphene-wrapped nitrogen-doped hollow carbon spheres for high-activity oxygen electroreduction[J]. Materials Chemistry Frontiers, 2018, 2(8): 1489-1497. |
37 | CHATTOPADHYAY J, PATHAK T S, SRIVASTAVA R, et al. Ni nano-particle encapsulated in hollow carbon sphere electrocatalyst in polymer electrolyte membrane water electrolyzer[J]. Electrochimica Acta, 2015, 167: 429-438. |
38 | LIU Huajun, ZHANG Yu, KE Qingqing, et al. Tuning the porous texture and specific surface area of nanoporous carbons for supercapacitor electrodes by adjusting the hydrothermal synthesis temperature[J]. Journal of Materials Chemistry A, 2013, 1(41): 12962-12970. |
39 | YANG Zhengchun, ZHANG Yu, KONG Junhua, et al. Hollow carbon nanoparticles of tunable size and wall thickness by hydrothermal treatment of alpha-cyclodextrin templated by F127 block copolymers[J]. Chemistry of Materials, 2013, 25(5): 704-710. |
40 | LIU Jian, QIAO Shizhang, LIU Hao, et al. Extension of the Stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres[J]. Angewandte Chemie: International Edition, 2011, 50(26): 5947-5951. |
41 | YANG Tianyu, LIU Jian, ZHOU Ruifeng, et al. N-doped mesoporous carbon spheres as the oxygen reduction reaction catalysts[J]. Journal of Materials Chemistry A, 2014, 2(42): 18139-18146. |
42 | WANG Guanghui, CAO Zhengwen, GU Dong, et al. Nitrogen-doped ordered mesoporous carbon supported bimetallic PtCo nanoparticles for upgrading of biophenolics[J]. Angewandte Chemie: International Edition, 2016, 55(31): 8850-8855. |
43 | LIU Dan, LEI Jiaheng, GUO Liping, et al. Simple hydrothermal synthesis of ordered mesoporous carbons from resorcinol and hexamine[J]. Carbon, 2011, 49(6): 2113-2119. |
44 | KIM Jung Ho, BHATTACHARJYA D, YU Jong-Sung. Synthesis of hollow TiO2@N-doped carbon with enhanced electrochemical capacitance by an in situ hydrothermal process using hexamethylenetetramine[J]. Journal of Materials Chemistry A, 2014, 2(29): 11472-11479. |
45 | 宋曜光, 刘军利, 许伟, 等. 模板法制备木质素基中孔炭材料研究进展[J]. 生物质化学工程, 2018, 52(1): 60-68. |
SONG Yaoguang, LIU Junli, XU Wei, et al. Research progress on synthesis of lignin-derived mesoporous carbon materials via template strategy[J]. Biomass Chemical Engineering, 2018, 52(1): 60-68. | |
46 | ZHAO Xin, CHEN Honglei, KONG Fangong, et al. Fabrication, characteristics and applications of carbon materials with different morphologies and porous structures produced from wood liquefaction: a review[J]. Chemical Engineering Journal, 2019, 364: 226-243. |
47 | ZHAO Xin, LI Wei, LIU Shouxin. Coupled soft-template/hydrothermal process synthesis of mesoporous carbon spheres from liquefied larch sawdust[J]. Materials Letters, 2013, 107: 5-8. |
48 | ZHAO Xin, LI Wei, ZHANG Shuangshuang, et al. Hierarchically tunable porous carbon spheres derived from larch sawdust and application for efficiently removing Cr(Ⅲ) and Pb(Ⅱ)[J]. Materials Chemistry and Physics, 2015, 155: 52-58. |
49 | WU Qiong, LI Wei, TAN Jia, et al. Flexible cage-like carbon spheres with ordered mesoporous structures prepared via a soft-template/hydrothermal process from carboxymethylcellulose[J]. RSC Advances, 2014, 4(106): 61518-61524. |
50 | WU Qiong, LI Wei, WU Yanjiao, et al. Effect of reaction time on structure of ordered mesoporous carbon microspheres prepared from carboxymethyl cellulose by soft-template method[J]. Industrial Crops and Products, 2015, 76: 866-872. |
51 | WEN Zhenhai, WANG Qiang, ZHANG Qian, et al. Hollow carbon spheres with wide size distribution as anode catalyst support for direct methanol fuel cells[J]. Electrochemistry Communications, 2007, 9(8): 1867-1872. |
52 | WANG Shiping, LIU Ruihan, HAN Chuanlong, et al. A novel strategy to synthesize hierarchical, porous carbohydrate-derived carbon with tunable properties[J]. Nanoscale, 2014, 6(22): 13510-13517. |
53 | WU Mingbo, AI Peipei, TAN Minghui, et al. Synthesis of starch-derived mesoporous carbon for electric double layer capacitor[J]. Chemical Engineering Journal, 2014, 245: 166-172. |
54 | WANG Shiping, HAN Chuanlong, WANG Jing, et al. Controlled synthesis of ordered mesoporous carbohydrate-derived carbons with flower-like structure and N-doping by self-transformation[J]. Chemistry of Materials, 2014, 26(23): 6872-6877. |
55 | WANG Xiaojing, FENG Ji, BAI Yaocai, et al. Synthesis, properties, and applications of hollow micro-/nanostructures[J]. Chemical Reviews, 2016, 116(18): 10983-11060. |
56 | LOU Xiongwen, ARCHER L A, YANG Zichao. Hollow micro-/nanostructures: synthesis and applications[J]. Advanced Materials, 2008, 20(21): 3987-4019. |
57 | MASON T G, WILKING J N, MELESON K, et al. Nanoemulsions: formation, structure, and physical properties[J]. Journal of Physics: Condensed Matter, 2006, 18(41): R635-R666. |
58 | WEI Jing, SUN Zhenkun, LUO Wei, et al. New insight into the synthesis of large-pore ordered mesoporous materials[J]. Journal of the American Chemical Society, 2017, 139(5): 1706-1713. |
59 | LIANG Chengdu, DAI Sheng. Synthesis of mesoporous carbon materials via enhanced hydrogen-bonding interaction[J]. Journal of the American Chemical Society, 2006, 128(16): 5316-5317. |
60 | LI Zhen, YUAN Lixia, YI Ziqi, et al. Confined selenium within porous carbon nanospheres as cathode for advanced Li-Se batteries[J]. Nano Energy, 2014, 9: 229-236. |
61 | CHEN Chunhong, WANG Haiyan, HAN Chuanlong, et al. Asymmetric flasklike hollow carbonaceous nanoparticles fabricated by the synergistic interaction between soft template and biomass[J]. Journal of the American Chemical Society, 2017, 139(7): 2657-2663. |
62 | LIANG Zhongguan, LIU Hao, ZENG Jianping, et al. Facile synthesis of nitrogen-doped microporous carbon spheres for high performance symmetric supercapacitors[J]. Nanoscale Research Letters, 2018, 13(1): 314. |
63 | LIBBRECHT W, VERBERCKMOES A, THYBAUT J W, et al. Soft templated mesoporous carbons: tuning the porosity for the adsorption of large organic pollutants[J]. Carbon, 2017, 116: 528-546. |
64 | MENG Yan, GU Dong, ZHANG Fuqiang, et al. Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation[J]. Angewandte Chemie: International Edition, 2005, 44(43): 7053-7059. |
65 | ZHANG Fuqiang, MENG Yan, GU Dong, et al. A facile aqueous route to synthesize highly ordered mesoporous polymers and carbon frameworks with Ia3d bicontinuous cubic structure[J]. Journal of the American Chemical Society, 2005, 127(39): 13508-13509. |
66 | XU Fan, CHEN Yiqing, TANG Minghui, et al. Acid induced self-assembly strategy to synthesize ordered mesoporous carbons from biomass[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(8): 4473-4479. |
67 | CHEN Aibing, YU Yifeng, ZHANG Yue, et al. Aqueous-phase synthesis of nitrogen-doped ordered mesoporous carbon nanospheres as an efficient adsorbent for acidic gases[J]. Carbon, 2014, 80: 19-27. |
68 | GUAN Buyuan, ZHANG Songlin, LOU Xiongwen. Realization of walnut-shaped particles with macro-/mesoporous open channels through pore architecture manipulation and their use in electrocatalytic oxygen reduction[J]. Angewandte Chemie: International Edition, 2018, 57(21): 6176-6180. |
69 | XU Xingtao, ALLAH A E, WANG Chen, et al. Capacitive deionization using nitrogen-doped mesostructured carbons for highly efficient brackish water desalination[J]. Chemical Engineering Journal, 2019, 362: 887-896. |
70 | GANGULY R, ASWAL V, HASSAN P, et al. Effect of SDS on the self-assembly behavior of the PEO-PPO-PEO triblock copolymer (EO)20(PO)70(EO)20[J]. Journal of Physical Chemistry B, 2006, 110(20): 9843-9849. |
71 | LIU Xin, SONG Pingping, HOU Jiahui, et al. Revealing the dynamic formation process and mechanism of hollow carbon spheres: from bowl to sphere[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 2797-2805. |
72 | ZHOU Tingsheng, ZHOU Yao, MA Ruguang, et al. In situ formation of nitrogen-doped carbon nanoparticles on hollow carbon spheres as efficient oxygen reduction electrocatalysts[J]. Nanoscale, 2016, 8(42): 18134-18142. |
73 | GUAN Buyuan, YU Le, LOU Xiongwen. Formation of asymmetric bowl-like mesoporous particles via emulsion-induced interface anisotropic assembly[J]. Journal of the American Chemical Society, 2016, 138(35): 11306-11311. |
74 | LIU Jian, YANG Tianyu, WANG Dawei, et al. A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres[J]. Nature Communications, 2013, 4(1): 1-7. |
75 | ALLAH A E, TAN Haibo, XU Xingtao, et al. Controlled synthesis of mesoporous nitrogen-doped carbons with highly ordered two-dimensional hexagonal mesostructures and their chemical activation[J]. Nanoscale, 2018, 10(26): 12398-12406. |
76 | XIE Lei, WANG Zhe, LIU Jinrong, et al. Kinetics-controlled synthesis of hierarchically porous materials with tunable properties from diverse building blocks[J]. Carbon, 2019, 155: 611-617. |
77 | WANG Jiangan, LIU Hongzhen, SUN Huanhuan, et al. One-pot synthesis of nitrogen-doped ordered mesoporous carbon spheres for high-rate and long-cycle life supercapacitors[J]. Carbon, 2018, 127: 85-92. |
78 | SUN Qiang, ZHANG Xiangqian, HAN Fei, et al. Controlled hydrothermal synthesis of 1D nanocarbons by surfactant-templated assembly for use as anodes for rechargeable lithium-ion batteries[J]. Journal of Materials Chemistry, 2012, 22(33): 17049-17054. |
79 | KAN Xun, CHEN Xiaoping, CHEN Wei, et al. Nitrogen-decorated, ordered mesoporous carbon spheres as high-efficient catalysts for selective capture and oxidation of H2S[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(8): 7609-7618. |
80 | ZHOU Tingsheng, ZHOU Yao, MA Ruguang, et al. Nitrogen-doped hollow mesoporous carbon spheres as a highly active and stable metal-free electrocatalyst for oxygen reduction[J]. Carbon, 2017, 114: 177-186. |
81 | LI Yunqi, TAN Haibo, SALUNKHE R R, et al. Hollow carbon nanospheres using an asymmetric triblock copolymer structure directing agent[J]. Chemical Communications, 2017, 53(1): 236-239. |
82 | TIAN Hao, LIN Zhixing, XU Fugui, et al. Quantitative control of pore size of mesoporous carbon nanospheres through the self-assembly of diblock copolymer micelles in solution[J]. Small, 2016, 12(23): 3155-3163. |
83 | LIU Chao, YU Meihua, LI Yang, et al. Synthesis of mesoporous carbon nanoparticles with large and tunable pore sizes[J]. Nanoscale, 2015, 7(27): 11580-11590. |
84 | PENG Liang, HUNG Chin-Te, WANG Shuwen, et al. Versatile nanoemulsion assembly approach to synthesize functional mesoporous carbon nanospheres with tunable pore sizes and architectures[J]. Journal of the American Chemical Society, 2019, 141(17): 7073-7080. |
85 | DU Juan, LIU Lei, HU Zepeng, et al. Order mesoporous carbon spheres with precise tunable large pore size by encapsulated self-activation strategy[J]. Advanced Functional Materials, 2018, 28(33): 1802332. |
86 | ZHANG Zhongzheng, SUN Nannan, WEI Wei. Facile and controllable synthesis of ordered mesoporous carbons with tunable single-crystal morphology for CO2 capture[J]. Carbon, 2020, 161: 629-638. |
87 | 杨媛媛, 曾丹林. 新型介孔碳的制备、功能化及应用研究进展[J]. 应用化工, 2019, 48(4): 897-901. |
YANG Yuanyuan, ZENG Danlin. Preparation, functionalization and application of novel mesoporous carbon materials[J]. Applied Chemical Industry, 2019, 48(4): 897-901. | |
88 | BENZIGAR M R, TALAPANENI S N, JOSEPH S, et al. Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications[J]. Chemical Society Reviews, 2018, 47(8): 2680-2721. |
89 | XING Ruohao, ZHOU Tingsheng, ZHOU Yao, et al. Creation of triple hierarchical micro-meso-macroporous N-doped carbon shells with hollow cores toward the electrocatalytic oxygen reduction reaction[J]. Nano-Micro Letters, 2018, 10(1): 3. |
90 | LI Jinlei, LI Zelong, TONG Jinhui, et al. Nitrogen-doped ordered mesoporous carbon sphere with short channel as an efficient metal-free catalyst for oxygen reduction reaction[J]. RSC Advances, 2015, 5(86): 70010-70016. |
91 | QIN Meichun, FAN Shiying, WANG Liang, et al. Oxygen and nitrogen co-doped ordered mesoporous carbon materials enhanced the electrochemical selectivity of O2 reduction to H2O2[J]. Journal of Colloid and Interface Science, 2020, 562: 540-549. |
92 | ZHANG Fei, LIU Xiaoyan, YANG Menghua, et al. Novel S-doped ordered mesoporous carbon nanospheres toward advanced lithium metal anodes[J]. Nano Energy, 2020, 69: 104443. |
93 | SUN Qiang, GUO ChunzZao, WANG Guanghui, et al. Fabrication of magnetic yolk-shell nanocatalysts with spatially resolved functionalities and high activity for nitrobenzene hydrogenation[J]. Chemistry: a European Journal, 2013, 19(20): 6217-6220. |
94 | BIAN Xiaojun, ZHU Jie, LIAO Lei, et al. Nanocomposite of MoS2 on ordered mesoporous carbon nanospheres: a highly active catalyst for electrochemical hydrogen evolution[J]. Electrochemistry Communications, 2012, 22: 128-132. |
95 | PIAO Yuanzhe, JANG Youngjin, SHOKOUHIMEHR M, et al. Facile aqueous-phase synthesis of uniform palladium nanoparticles of various shapes and sizes[J]. Small, 2007, 3(2): 255-260. |
96 | LIU Jian, WICKRAMARATNE N P, QIAO Shizhang, et al. Molecular-based design and emerging applications of nanoporous carbon spheres[J]. Nature Materials, 2015, 14(8): 763-774. |
97 | CHANG Peiyi, BINDUMADHAVAN K, DOONG Ruey-An. Size effect of ordered mesoporous carbon nanospheres for anodes in Li-ion battery[J]. Nanomaterials, 2015, 5(4): 2348-2358. |
98 | YE Huan, YIN Yaxia, XIN Sen, et al. Tuning the porous structure of carbon hosts for loading sulfur toward long lifespan cathode materials for Li-S batteries[J]. Journal of Materials Chemistry A, 2013, 1(22): 6602-6608. |
99 | WU Ruofei, SHEN Shuiyun, XIA Guofeng, et al. Soft-templated self-assembly of mesoporous anatase TiO2/carbon composite nanospheres for high-performance lithium ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(31): 19968-19978. |
100 | XU Ming, YU Qiang, LIU Zhenhui, et al. Tailoring porous carbon spheres for supercapacitors[J]. Nanoscale, 2018. 10(46): 21604-21616. |
101 | LIN Junsheng, YAO Lei, LI Zheling, et al. Hybrid hollow spheres of carbon@CoxNi1-xMoO4 as advanced electrodes for high-performance asymmetric supercapacitors[J]. Nanoscale, 2019, 11(7): 3281-3291. |
[1] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[2] | 高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676. |
[3] | 王雪婷, 顾霞, 徐先宝, 赵磊, 薛罡, 李响. 水热预处理对餐厨垃圾厌氧发酵产戊酸的影响[J]. 化工进展, 2023, 42(9): 4994-5002. |
[4] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[5] | 毛善俊, 王哲, 王勇. 基团辨识加氢:从概念到应用[J]. 化工进展, 2023, 42(8): 3917-3922. |
[6] | 李润蕾, 王子彦, 王志苗, 李芳, 薛伟, 赵新强, 王延吉. CuO-CeO2/TiO 2 高效催化CO低温氧化反应性能[J]. 化工进展, 2023, 42(8): 4264-4274. |
[7] | 储甜甜, 刘润竹, 杜高华, 马嘉浩, 张孝阿, 王成忠, 张军营. 有机胍催化脱氢型RTV硅橡胶的制备和可降解性能[J]. 化工进展, 2023, 42(7): 3664-3673. |
[8] | 俞俊楠, 俞建峰, 程洋, 齐一搏, 化春键, 蒋毅. 基于深度学习的变宽度浓度梯度芯片性能预测[J]. 化工进展, 2023, 42(7): 3383-3393. |
[9] | 孙旭东, 赵玉莹, 李诗睿, 王琦, 李晓健, 张博. 我国地方性氢能发展政策的文本量化分析[J]. 化工进展, 2023, 42(7): 3478-3488. |
[10] | 徐国彬, 刘洪豪, 李洁, 郭家奇, 王琪. ZnO量子点水性喷墨荧光墨水制备及性能[J]. 化工进展, 2023, 42(6): 3114-3122. |
[11] | 杨家添, 唐金铭, 梁恣荣, 黎胤宏, 胡华宇, 陈渊. 新型淀粉基高吸水树脂抑尘剂的制备及其应用[J]. 化工进展, 2023, 42(6): 3187-3196. |
[12] | 金涌, 程易, 白丁荣, 张晨曦, 魏飞. 中国流态化技术研发史略[J]. 化工进展, 2023, 42(6): 2761-2780. |
[13] | 陈怡欣, 甄摇摇, 陈瑞浩, 吴继伟, 潘丽美, 姚翀, 罗杰, 卢春山, 丰枫, 王清涛, 张群峰, 李小年. 铂基纳米催化剂的制备及在加氢领域的进展[J]. 化工进展, 2023, 42(6): 2904-2915. |
[14] | 陈明星, 王新亚, 张威, 肖长发. 纤维基耐高温空气过滤材料研究进展[J]. 化工进展, 2023, 42(5): 2439-2453. |
[15] | 王雪, 徐期勇, 张超. 木质纤维素类生物质水热炭化机理及水热炭应用进展[J]. 化工进展, 2023, 42(5): 2536-2545. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |