化工进展 ›› 2021, Vol. 40 ›› Issue (2): 917-931.DOI: 10.16085/j.issn.1000-6613.2020-0736
李广柱1,2(), 曾尚景1,2, 孙述海1,2, 许开成3, 边德军1,2()
收稿日期:
2020-05-06
修回日期:
2020-07-05
出版日期:
2021-02-05
发布日期:
2021-02-09
通讯作者:
边德军
作者简介:
李广柱(1978—),男,博士,讲师,研究方向为水处理技术。E-mail:基金资助:
Guangzhu LI1,2(), Shangjing ZENG1,2, Shuhai SUN1,2, Kaicheng XU3, Dejun BIAN1,2()
Received:
2020-05-06
Revised:
2020-07-05
Online:
2021-02-05
Published:
2021-02-09
Contact:
Dejun BIAN
摘要:
纳米铁氧化物能够更高效地去除水中多种有机和无机污染物质,但易团聚失活、易流失等问题限制了其在水处理中的实际应用。生物炭(biochar,BC)作为一种新型的多孔材料具有比表面积大、碳结构稳定、原料来源广、成本低等优点,是负载纳米铁氧化物的理想载体。近年来,BC负载铁氧化物复合材料(铁氧化物/BC)在水处理领域表现出巨大的应用潜力而备受关注。本文重点介绍和总结了铁氧化物/BC的制备方法,及其吸附、催化氧化去除水中磷、有机污染物、重金属及砷的应用、机理和影响因素;并介绍了其在污泥脱水、光催化消毒等水处理环节的应用。在此基础上,从进一步提高去除污染物性能、实际应用经济和技术可行性、扩展材料应用范围等方面提出了今后研究的方向。
中图分类号:
李广柱, 曾尚景, 孙述海, 许开成, 边德军. 生物炭负载铁氧化物复合材料的制备及在水处理中的应用[J]. 化工进展, 2021, 40(2): 917-931.
Guangzhu LI, Shangjing ZENG, Shuhai SUN, Kaicheng XU, Dejun BIAN. Preparation of biochar supported iron oxides composites and its application in water treatment[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 917-931.
铁氧化物/BC | 吸附条件 | 吸附能力 /mg·g-1 | 参考 文献 | ||||||
---|---|---|---|---|---|---|---|---|---|
BC | 铁氧化物 | Fe含量/% | SSA/m2·g-1 | APS③/nm | 温度/℃ | pH | 吸附剂量/g·L-1 | ||
橘子皮 | Fe3O4 | — | 19.4 | 6.8 | 25 | — | 6.25 | 1.24 | [ |
棉秆颗粒生物炭 | Fe2O3/FeOOH | — | 219.00 | 4.22 | 25 | — | 2.0 | 0.96 | [ |
麦秸 | 非晶态FeOOH | 47.06① | 138.56 | 2.75 | 室温 | 6.0 | 4.0 | 16.58 | [ |
芦苇 | Fe(OH)3 | 1.20② | — | — | 30 | 7.0 | 7. 0 | 1.185 | [ |
木屑 | Fe(OH)3 | 1.89② | 11.08 | — | 24 | — | 33.3 | 3.201 | [ |
水葫芦 | Fe3O4/Fe2O3 | 约65① | — | — | 25 | 7.0 | 5.0 | 5.07 | [ |
ZnCl2活化生物污泥 | γ-Fe2O3/Fe3O4 | — | 156.79 | 0.888 | 22 | 7.0 | 2.0 | 61.2 | [ |
Fe(OH)3 /α-Fe2O3 | — | 254.40 | 0.887 | 111.0 | |||||
竹子 | α-Fe2O3/Fe3O4 | — | 198.1 | — | 25 | 3.0 | 10.0 | 2.85 | [ |
含铁废物衍生真菌 | γ-Fe2O3 | 45① | 51.6 | 13.2 | 25 | — | 2.0 | 23.9 | [ |
表1 不同生物炭负载铁氧化物复合材料(铁氧化物/BC)对水中磷的吸附
铁氧化物/BC | 吸附条件 | 吸附能力 /mg·g-1 | 参考 文献 | ||||||
---|---|---|---|---|---|---|---|---|---|
BC | 铁氧化物 | Fe含量/% | SSA/m2·g-1 | APS③/nm | 温度/℃ | pH | 吸附剂量/g·L-1 | ||
橘子皮 | Fe3O4 | — | 19.4 | 6.8 | 25 | — | 6.25 | 1.24 | [ |
棉秆颗粒生物炭 | Fe2O3/FeOOH | — | 219.00 | 4.22 | 25 | — | 2.0 | 0.96 | [ |
麦秸 | 非晶态FeOOH | 47.06① | 138.56 | 2.75 | 室温 | 6.0 | 4.0 | 16.58 | [ |
芦苇 | Fe(OH)3 | 1.20② | — | — | 30 | 7.0 | 7. 0 | 1.185 | [ |
木屑 | Fe(OH)3 | 1.89② | 11.08 | — | 24 | — | 33.3 | 3.201 | [ |
水葫芦 | Fe3O4/Fe2O3 | 约65① | — | — | 25 | 7.0 | 5.0 | 5.07 | [ |
ZnCl2活化生物污泥 | γ-Fe2O3/Fe3O4 | — | 156.79 | 0.888 | 22 | 7.0 | 2.0 | 61.2 | [ |
Fe(OH)3 /α-Fe2O3 | — | 254.40 | 0.887 | 111.0 | |||||
竹子 | α-Fe2O3/Fe3O4 | — | 198.1 | — | 25 | 3.0 | 10.0 | 2.85 | [ |
含铁废物衍生真菌 | γ-Fe2O3 | 45① | 51.6 | 13.2 | 25 | — | 2.0 | 23.9 | [ |
铁氧化物/BC | 重金属浓度 /mg·L-1 | 吸附条件 | 吸附效果 | 参考 文献 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
BC | 铁氧化物 | Fe含量/% | SSA /m2·g-1 | APS④ /nm | 温度/℃ | pH | 吸附剂量 /g·L-1 | 吸附能力 /mg·g-1 | 去除率 /% | ||
白杨木 | γ-Fe2O3 | 74.3① | — | — | As(Ⅴ):5~200 | 22 | — | 2.0 | 3.147 | — | [ |
松木 | γ-Fe2O3 | 2.95② | 193.1 | — | As(Ⅴ):1~50 | 22 | — | 2.5 | 0.429 | — | [ |
洋葱皮 | Fe3O4 | — | 38.58 | 21 | As(Ⅲ):10 | 25 | 7.0 | 0.1 | 57.47 | 98.9 | [ |
玉米秸 | γ-Fe2O3/α-Fe2O3 | 6.05② | 297.13 | 5.80 | As(Ⅴ):10 | 25 | 6.0 | 5.0 | 6.80 | 86.12 | [ |
废棉花 | β-FeOOH | 8.6② | 8.68 | — | As(Ⅴ):0.275 | 25 | 7.0 | 1.0 | 8.08 | >96.4 | [ |
As(Ⅲ):0.275 | 6.04 | >96.4 | |||||||||
稻壳 | Fe3O4 | — | 1736.8 | 4.22 | As(Ⅴ):0.01~10 | 室温 | 7~12 | 10~50 | 5987 | >85 | [ |
花生壳 | γ-Fe2O3 | 20.95② | 144.01 | — | Cr(Ⅵ):10~320 | 25 | 5.13 | 2.0 | 77.54 | — | [ |
松香 | α-Fe2O3 | — | 5.03 | 50~150 | Cr(Ⅵ):50 | 26 | 9.0 | 0.31 | 166 | >90 | [ |
甘蔗渣 | Fe3O4/Fe2O3/FeO | 3.54③ | 16.18 | <100 | Cr(Ⅵ):10~300 | 30 | 4.61 | 1.0 | 71.04 | — | [ |
生物污泥 | Fe3O4/FeO/Fe0 | — | — | — | Cr(Ⅵ):50 | 25 | 2.0 | 4.0 | 11.56 | — | [ |
木屑 | Fe3O4 | — | 68 | 9.11 | Zn:0.6~19.6 | 20 | 4.4~5.5 | 1.25 | 4.55 | — | [ |
Cu:0.6~19.2 | 7.68 | ||||||||||
Pb:2.0~62.1 | 31.22 | ||||||||||
椰子壳 | Fe3O4/Fe2O3 | — | 834 | — | Pb:25~125 | 30 | 4.5 | 2.0 | 162.75 | — | [ |
Cd:25~125 | 4.8 | 162.75 | |||||||||
废海带 | Fe2O3/Fe3O4 | — | 0.97 | — | Cu:1200 | 室温 | — | 10 | 47.75 | — | [ |
Cd:1200 | 23.16 | ||||||||||
Zn:1200 | 22.22 | ||||||||||
活化玉米秆 | α-FeOOH | 14.75② | 391.6 | 6.89 | Cu:50 | 25 | 7.0 | 0.25 | 144.7 | 71.9 | [ |
含Fe生物污泥 | Fe3O4/Fe2O3 | 14.1② | 114.57 | 32 | Cd:8 | 室温 | 5.0 | 0.8 | 14.18 | >99 | [ |
Pb:70 | 6.0 | 1.2 | 59.50 | >99 |
表2 不同生物炭负载铁氧化物复合材料(铁氧化物/BC)对水中重金属的吸附
铁氧化物/BC | 重金属浓度 /mg·L-1 | 吸附条件 | 吸附效果 | 参考 文献 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
BC | 铁氧化物 | Fe含量/% | SSA /m2·g-1 | APS④ /nm | 温度/℃ | pH | 吸附剂量 /g·L-1 | 吸附能力 /mg·g-1 | 去除率 /% | ||
白杨木 | γ-Fe2O3 | 74.3① | — | — | As(Ⅴ):5~200 | 22 | — | 2.0 | 3.147 | — | [ |
松木 | γ-Fe2O3 | 2.95② | 193.1 | — | As(Ⅴ):1~50 | 22 | — | 2.5 | 0.429 | — | [ |
洋葱皮 | Fe3O4 | — | 38.58 | 21 | As(Ⅲ):10 | 25 | 7.0 | 0.1 | 57.47 | 98.9 | [ |
玉米秸 | γ-Fe2O3/α-Fe2O3 | 6.05② | 297.13 | 5.80 | As(Ⅴ):10 | 25 | 6.0 | 5.0 | 6.80 | 86.12 | [ |
废棉花 | β-FeOOH | 8.6② | 8.68 | — | As(Ⅴ):0.275 | 25 | 7.0 | 1.0 | 8.08 | >96.4 | [ |
As(Ⅲ):0.275 | 6.04 | >96.4 | |||||||||
稻壳 | Fe3O4 | — | 1736.8 | 4.22 | As(Ⅴ):0.01~10 | 室温 | 7~12 | 10~50 | 5987 | >85 | [ |
花生壳 | γ-Fe2O3 | 20.95② | 144.01 | — | Cr(Ⅵ):10~320 | 25 | 5.13 | 2.0 | 77.54 | — | [ |
松香 | α-Fe2O3 | — | 5.03 | 50~150 | Cr(Ⅵ):50 | 26 | 9.0 | 0.31 | 166 | >90 | [ |
甘蔗渣 | Fe3O4/Fe2O3/FeO | 3.54③ | 16.18 | <100 | Cr(Ⅵ):10~300 | 30 | 4.61 | 1.0 | 71.04 | — | [ |
生物污泥 | Fe3O4/FeO/Fe0 | — | — | — | Cr(Ⅵ):50 | 25 | 2.0 | 4.0 | 11.56 | — | [ |
木屑 | Fe3O4 | — | 68 | 9.11 | Zn:0.6~19.6 | 20 | 4.4~5.5 | 1.25 | 4.55 | — | [ |
Cu:0.6~19.2 | 7.68 | ||||||||||
Pb:2.0~62.1 | 31.22 | ||||||||||
椰子壳 | Fe3O4/Fe2O3 | — | 834 | — | Pb:25~125 | 30 | 4.5 | 2.0 | 162.75 | — | [ |
Cd:25~125 | 4.8 | 162.75 | |||||||||
废海带 | Fe2O3/Fe3O4 | — | 0.97 | — | Cu:1200 | 室温 | — | 10 | 47.75 | — | [ |
Cd:1200 | 23.16 | ||||||||||
Zn:1200 | 22.22 | ||||||||||
活化玉米秆 | α-FeOOH | 14.75② | 391.6 | 6.89 | Cu:50 | 25 | 7.0 | 0.25 | 144.7 | 71.9 | [ |
含Fe生物污泥 | Fe3O4/Fe2O3 | 14.1② | 114.57 | 32 | Cd:8 | 室温 | 5.0 | 0.8 | 14.18 | >99 | [ |
Pb:70 | 6.0 | 1.2 | 59.50 | >99 |
铁氧化物/BC | 有机物浓度/mg·L-1 | 吸附条件 | 吸附效果 | 参考 文献 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
BC | 铁氧化物 | SSA /m2·g-1 | APS① /nm | 温度 /℃ | pH | 吸附剂量 /g·L-1 | 吸附能力 /mg·g-1 | 去除率 /% | ||
橘子皮 | Fe3O4 | 23.4 | 7.2 | 萘:18 | 25 | — | 6.25 | 23.0 | 99.6 | [ |
对硝基甲苯:318 | 43.4 | 87.1 | ||||||||
木屑 | Fe3O4/γ-Fe2O3 | 219 | 6.69 | 菲:0.022 | 20 | — | 0.375 | — | >99.9 | [ |
苯酚:5-100 | 1.25 | 20.695 | — | |||||||
松木屑 | Fe3O4 | 125.8 | 9.6 | 磺胺甲恶唑:20.1 | 25 | 4.0 | 2.0 | 13.83 | 85.2 | [ |
松子和核桃壳 | Fe3O4 | 365 | — | 卡马西平:30 | 25 | 6.0 | 0.2 | 62.7 | 约40 | [ |
四环素:30 | 94.2 | 约50 | ||||||||
核桃壳 | γ-Fe2O3/Fe3O4 | 723.5 | 2.76 | 布洛芬:<10 | 25 | 3.0 | 0.5 | 75 | >95 | [ |
含Fe混凝污泥 | γ-Fe2O3 | 91 | — | 氧氟沙星:30 | 25 | 6.0 | 5.0 | 19.74 | 约96 | [ |
香蕉皮提取物 | 非晶态FexOy | — | — | 亚甲蓝:50 | 30 | 6.1 | 0.5 | 862 | >90 | [ |
表3 不同生物炭负载铁氧化物复合材料(铁氧化物/BC)对水中有机污染物的吸附
铁氧化物/BC | 有机物浓度/mg·L-1 | 吸附条件 | 吸附效果 | 参考 文献 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
BC | 铁氧化物 | SSA /m2·g-1 | APS① /nm | 温度 /℃ | pH | 吸附剂量 /g·L-1 | 吸附能力 /mg·g-1 | 去除率 /% | ||
橘子皮 | Fe3O4 | 23.4 | 7.2 | 萘:18 | 25 | — | 6.25 | 23.0 | 99.6 | [ |
对硝基甲苯:318 | 43.4 | 87.1 | ||||||||
木屑 | Fe3O4/γ-Fe2O3 | 219 | 6.69 | 菲:0.022 | 20 | — | 0.375 | — | >99.9 | [ |
苯酚:5-100 | 1.25 | 20.695 | — | |||||||
松木屑 | Fe3O4 | 125.8 | 9.6 | 磺胺甲恶唑:20.1 | 25 | 4.0 | 2.0 | 13.83 | 85.2 | [ |
松子和核桃壳 | Fe3O4 | 365 | — | 卡马西平:30 | 25 | 6.0 | 0.2 | 62.7 | 约40 | [ |
四环素:30 | 94.2 | 约50 | ||||||||
核桃壳 | γ-Fe2O3/Fe3O4 | 723.5 | 2.76 | 布洛芬:<10 | 25 | 3.0 | 0.5 | 75 | >95 | [ |
含Fe混凝污泥 | γ-Fe2O3 | 91 | — | 氧氟沙星:30 | 25 | 6.0 | 5.0 | 19.74 | 约96 | [ |
香蕉皮提取物 | 非晶态FexOy | — | — | 亚甲蓝:50 | 30 | 6.1 | 0.5 | 862 | >90 | [ |
铁氧化物/BC | 污染物浓度 /mg·L-1 | 反应条件 | 催化降解效果 | 参考文献 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
BC | 铁氧化物 | Fe含量 /% | SSA /m2·g-1 | 催化剂量 /g·L-1 | 氧化剂浓度 /mg·L-1 | pH | 温度 /℃ | 时间 /min | 去除率 /% | 矿化率 /% | ||
生物污泥 | α-Fe2O3 | 19.3① | 6.30 | 罗丹明B:55.5 | 0.33④ | H2O2:200 | 4.0 | 25 | 120 | >99.8 | >59 | [ |
硝基苯酚:65 | H2O2:80 | 60 | 92.74 | 47.25 | ||||||||
厌氧硝化污泥 | α-Fe2O3 | 19.15① | 15.17 | 罗丹明B:55.5 | 0.33⑤ | H2O2:200 | 4.0 | 25 | 30 | 100 | 69 | [ |
甘蔗渣 | Fe3O4/FeOOH/Fe2O3 | 16.34① | 179.5 | 橙G:100 | 0.5 | H2O2:75 | 5.5 | 25 | 120 | 99.7 | 44.2 | [ |
生物污泥 | Fe3O4 | — | 50.10 | 亚甲蓝:100 | 1.0 | H2O2:300 | 3.0 | 室温 | 20 | 98 | 43 | [ |
印染废水TOC:230 | 30 | — | 49 | |||||||||
棕榈叶柄 | α-FeOOH | 34.92② | 221 | 硝基间苯二酚:20 | 1.0 | H2O2:850 | 4 | 25 | 40 | 100 | — | [ |
甘蔗渣 | Fe2O3/Fe3O4 | — | 161.8 | 甲硝唑:40 | 0.3 | H2O2:1122 | 5.61 | 30 | 120 | 100 | 32.83 | [ |
甘蔗渣 | Fe3O4/FeOOH/Fe2O3 | 15.61① | 185.4 | 铬黑T:100 | 0.1 | H2O2:34 | 2~3 | 25 | 120 | 56.6 | — | [ |
K2S2O8:270 | 87.7 | 约55 | ||||||||||
生物污泥 | Fe(Ⅲ)/Fe(Ⅱ) | 1.37③ | — | 磺胺甲唑:10.13 | 2.0 | K2S2O8:405 | 5~9 | 25 | 180 | 94.6 | 58 | [ |
生物污泥 | Fe(Ⅲ)/Fe(Ⅱ) | 0.5③ | 157.4 | 三氯生:10 | 1.0 | KHSO5:122 | 7.2 | 25 | 240 | 99.2 | 32.5 | [ |
香蕉皮 | γ-Fe2O3 | 5.24① | 504 | 双酚A:20 | 0.3 | K2S2O8:5mmol | 6.28 | 25 | 20 | 100 | 90 | [ |
表4 不同生物炭负载铁氧化物复合材料(铁氧化物/BC)催化氧化降解水中有机污染物
铁氧化物/BC | 污染物浓度 /mg·L-1 | 反应条件 | 催化降解效果 | 参考文献 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
BC | 铁氧化物 | Fe含量 /% | SSA /m2·g-1 | 催化剂量 /g·L-1 | 氧化剂浓度 /mg·L-1 | pH | 温度 /℃ | 时间 /min | 去除率 /% | 矿化率 /% | ||
生物污泥 | α-Fe2O3 | 19.3① | 6.30 | 罗丹明B:55.5 | 0.33④ | H2O2:200 | 4.0 | 25 | 120 | >99.8 | >59 | [ |
硝基苯酚:65 | H2O2:80 | 60 | 92.74 | 47.25 | ||||||||
厌氧硝化污泥 | α-Fe2O3 | 19.15① | 15.17 | 罗丹明B:55.5 | 0.33⑤ | H2O2:200 | 4.0 | 25 | 30 | 100 | 69 | [ |
甘蔗渣 | Fe3O4/FeOOH/Fe2O3 | 16.34① | 179.5 | 橙G:100 | 0.5 | H2O2:75 | 5.5 | 25 | 120 | 99.7 | 44.2 | [ |
生物污泥 | Fe3O4 | — | 50.10 | 亚甲蓝:100 | 1.0 | H2O2:300 | 3.0 | 室温 | 20 | 98 | 43 | [ |
印染废水TOC:230 | 30 | — | 49 | |||||||||
棕榈叶柄 | α-FeOOH | 34.92② | 221 | 硝基间苯二酚:20 | 1.0 | H2O2:850 | 4 | 25 | 40 | 100 | — | [ |
甘蔗渣 | Fe2O3/Fe3O4 | — | 161.8 | 甲硝唑:40 | 0.3 | H2O2:1122 | 5.61 | 30 | 120 | 100 | 32.83 | [ |
甘蔗渣 | Fe3O4/FeOOH/Fe2O3 | 15.61① | 185.4 | 铬黑T:100 | 0.1 | H2O2:34 | 2~3 | 25 | 120 | 56.6 | — | [ |
K2S2O8:270 | 87.7 | 约55 | ||||||||||
生物污泥 | Fe(Ⅲ)/Fe(Ⅱ) | 1.37③ | — | 磺胺甲唑:10.13 | 2.0 | K2S2O8:405 | 5~9 | 25 | 180 | 94.6 | 58 | [ |
生物污泥 | Fe(Ⅲ)/Fe(Ⅱ) | 0.5③ | 157.4 | 三氯生:10 | 1.0 | KHSO5:122 | 7.2 | 25 | 240 | 99.2 | 32.5 | [ |
香蕉皮 | γ-Fe2O3 | 5.24① | 504 | 双酚A:20 | 0.3 | K2S2O8:5mmol | 6.28 | 25 | 20 | 100 | 90 | [ |
1 | 杨金梅, 吕建波, 李莞璐, 等. 壳聚糖载纳米羟基氧化铁对水中磷的吸附[J]. 环境工程学报, 2018, 12(5): 1286-1294. |
YANG Jinmei, Jianbo LYU, LI Wanlu, et al. Adsorption of phosphate by nano akaganeite impregnated chitosan[J]. Chinese Journal of Environmental Engineering, 2018, 12(5): 1286-1294. | |
2 | 段正洋, 刘树丽, 徐晓军, 等. 磁性Fe3O4纳米粒子的制备、功能化及在重金属废水中的应用[J]. 化工进展, 2017, 36(5): 1791-1801. |
DUAN Zhengyang, LIU Shuli, XU Xiaojun, et al. Preparation and functionalization of magnetic Fe3O4 nanoparticles and its application in heavy metal wastewater[J]. Chemical Industry and Engineering Progress, 2017, 36(5): 1791-1801. | |
3 | 李广柱, 艾胜书, 田曦, 等. 巯基功能化磁性纳米材料去除水中 Ag(Ⅰ)和Cd(Ⅱ)[J]. 水处理技术, 2018, 44(9): 93-98. |
LI Guangzhu, AI Shengshu, TIAN Xi, et al. Efficient removal of Ag(Ⅰ) and Cd() from aqueous solution by sulfhydryl-functionalized magnetic nanomaterial[J]. Technology of Water Treatment, 2018, 44(9): 93-98. | |
4 | 刘剑聪. 地下水厂铁泥制备吸附剂:矿物相变、磁性特征和吸附性能[D]. 长春: 东北师范大学, 2018. |
LIU Jiancong. Conversion of groundwater treatment sludge into adsorbent: mineral phase transformation, magnetic property and adsorption performance[D]. Changchun: Northeast Normal University, 2018. | |
5 | 罗成, 李艳龙, 建纲. 四氧化三铁纳米颗粒过氧化物酶样活性的应用[J]. 科学通报, 2015, 60(35): 3478-3488. |
LUO Cheng, LI Yanlong, JIAN Gang. Applications of iron oxide nanoparticles as peroxidase mimetics[J]. Chinese Science Bulletin, 2015, 60(35): 3478-3488. | |
6 | 谢之润. 基于过渡金属氧化物降解DDT性能的研究[D]. 济南: 山东大学, 2016. |
XIE Zhirun. DDT degradation performance based on transition metal oxides[D]. Jinan: Shandong University, 2016. | |
7 | LI Guangzhu, ZHANG Zhuqing, GENG Chao, et al. Sulfhydryl-functionalised magnetic nanoparticles as sorbent in dispersive solid-phase extraction for the rapid enrichment of mercury species from natural water samples[J]. International Journal of Environmental Analytical Chemistry, 2017, 97(7): 657-672. |
8 | LI Guangzhu, LIU Miao, ZHANG Zhuqing, et al. Extraction of methylmercury and ethylmercury from aqueous solution using surface sulfhydryl-functionalized magnetic mesoporous silica nanoparticles[J]. Journal of Colloid and Interface Science, 2014, 424: 124-131. |
9 | 万琪, 李旭春, 潘丙才. 乙醇处理对树脂基纳米水合氧化铁结构及其除砷性能的影响[J]. 环境科学, 2013, 34(8): 3151-3155. |
WAN Qi,LI Xuchun,PAN Bingcai. Ethanol-induced influence on the structure and arsenate adsorption of resin- based nano-hydrated ferric oxide[J]. Environmental Science, 2013, 34(8): 3151-3155. | |
10 | 王重庆, 王晖, 江小燕, 等. 生物炭吸附重金属离子的研究进展[J]. 化工进展, 2019, 38(1): 692-706. |
WANG Chongqing, WANG Hui, JIANG Xiaoyan, et al. Research advances on adsorption of heavy metals by biochar[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 692-706. | |
11 | TITIRICI Maria-Magdalena, WHITE Robin J, FALCO Camillo, et al. Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage[J]. Energy & Environmental Science, 2012, 5: 6796-6822. |
12 | HUGGINS Tyler M, HAEGER Alexander, BIFFINGER Justin C, et al. Granular biochar compared with activated carbon for wastewater treatment and resource recovery[J]. Water Research, 2016, 94: 225-232. |
13 | 王哲, 骆逸飞, 郑春丽, 等. 淋溶条件下生物炭对矿区土壤中重金属迁移的影响[J]. 化工进展, 2020, 39(2): 738-746. |
WANG Zhe, LUO Yifei, ZHENG Chunli, et al. Effect of biochar on migration of heavy metals in mining soil under leaching conditions[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 738-746. | |
14 | QIAN Kezhen, KUMAR Ajay, ZHANG Hailin, et al. Recent advances in utilization of biochar[J]. Renewable and Sustainable Energy Reviews, 2015, 42: 1055-1064. |
15 | Honghong LYU, TANG Jingchun, CUI Mengke, et al. Biochar/iron (BC/Fe) composites for soil and groundwater remediation: synthesis, applications, and mechanisms[J]. Chemosphere, 2020, 246: 125609. |
16 | PREMARATHNAA K.S.D., RAJAPAKSHAA Anushka Upamali, SARKARB Binoy,et al. Biochar-based engineered composites for sorptive decontamination of water: a review[J]. Chemical Engineering Journal, 2019, 372: 536-550. |
17 | Kumar ⅥKRANT, KIMB Ki-Hyun, Yong Sik OK, et al. Engineered/designer biochar for the removal of phosphate in water and wastewater[J]. Science of the Total Environment, 2018, 616/617: 1242-1260. |
18 | 王靖宜, 王丽, 张文龙, 等. 生物炭基复合材料制备及其对水体特征污染物的吸附性能[J]. 化工进展, 2019, 38(8): 3838-3851. |
WANG Jingyi, WANG Li, ZHANG Wenlong, et al. Preparation of biochar-based composites and their adsorption performances for characteristic contaminants in wastewater[J]. Chemical Industry and Engineering Progress, 2019, 38(8): 3838-3851. | |
19 | SHEN Yafei. Carbothermal synthesis of metal-functionalized nanostructures for energy and environmental applications[J]. Journal of Materials Chemistry A, 2015, 3: 13114-13188. |
20 | ZHANG Ming, GAO Bin, VARNOOSFADERANI Sima, et al. Preparation and characterization of a novel magnetic biochar for arsenic removal[J]. Bioresource Technology, 2013, 130: 457-462. |
21 | YUAN Shijie, DAI Xiaohu. Facile synthesis of sewage sludge-derived mesoporous material as anefficient and stable heterogeneous catalyst for photo-Fenton reaction[J]. Applied Catalysis B: Environmental, 2014, 154/155: 252-258. |
22 | WANG Shengsen, GAO Bin, ZIMMERMAN Andrew R, et al. Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite [J]. Bioresource Technology, 2015, 175: 391-395. |
23 | SINGH Vikash, SRIVASTAVA Vimal Chandra. Self-engineered iron oxide nanoparticle incorporated on mesoporous biochar derived from textile mill sludge for the removal of an emerging pharmaceutical pollutant[J]. Environmental Pollution, 2020, 259: 113822-113830. |
24 | LIU Yonglin, LI Yongtao, HUANG Jianfei, et al. An advanced sol-gel strategy for enhancing interfacial reactivity of iron oxide nanoparticles on rosin biochar substrate to remove Cr(Ⅵ)[J]. Science of the Total Environment, 2019, 690: 438-446. |
25 | LIU Wujun, JIANG Hong, YU Hanqing. Development of biochar-based functional materials: toward a sustainable platform carbon material[J]. Chemical Reviews, 2015, 115: 12251-12285. |
26 | CHEN Zaiming, XIAO Xin, CHEN Baoliang, et al. Quantification of chemical states, dissociation constants and contents of oxygen-containing groups on the surface of biochars produced at different temperatures[J]. Environmental Science & Technology, 2015, 49: 309-317. |
27 | LIAN Fei, XING Baoshan. Black carbon (biochar) in water/soil environments: molecular structure, sorption, stability, and potential risk[J]. Environmental Science & Technology, 2017, 51: 13517-13532. |
28 | HOCH Laurab, MACK Elizabeth J, HYDUTSKY Bianca W, et al. Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium[J]. Environmental Science & Technology, 2008, 42, 2600-2605. |
29 | 朱世殊. 改性芦苇生物炭对氧化还原反应去除水中污染物的强化机制[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
ZHU Shishu. The mechanisms of modified reed biochar-mediated redox reactions for water ecological remediation[D]. Harbin: Harbin Institute of Technology, 2019. | |
30 | HE Ruozhu, PENG Zhongya, Honghong LYU, et al. Synthesis and characterization of an iron-impregnated biochar for aqueous arsenic removal[J]. Science of the Total Environment, 2018, 612: 1177-1186. |
31 | YI Yunqiang, Guoquan TUA, TSANGC Pokeung Eric, et al. Insight into the influence of pyrolysis temperature on Fenton-like catalytic performance of magnetic biochar[J]. Chemical Engineering Journal, 2020, 380: 122518-122528. |
32 | CHEN Baoliang, CHEN Zaiming, Shaofang LYU. A novel magnetic biochar efficiently sorbs organic pollutants and phosphate[J]. Bioresource Technology, 2011, 102: 716-723. |
33 | HAN Zhantao, SANI Badruddeen, MROZIK Wojciech, et al. Magnetite impregnation effects on the sorbent properties of activated carbons and biochars[J]. Water Research, 2015, 70: 394-403. |
34 | REGUYALA Febelyn, SARMAHA Ajit K, GAO Wei. Synthesis of magnetic biochar from pine sawdust via oxidative hydrolysis of FeCl2 for the removal sulfamethoxazole from aqueous solution[J]. Journal of Hazardous Materials, 2017, 321: 868-878. |
35 | ZHANG Ping, David O’CONNOR, WANG Yinan, et al. A green biochar/iron oxide composite for methylene blue removal[J]. Journal of Hazardous Materials, 2020, 384: 121286. |
36 | HALE S E,ALLING V,MARTINSEN V, et al. The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars[J]. Chemosphere, 2013, 91(11): 1612-1619. |
37 | OLIVEIRA Luiz C A, RIOS Rachel V R A, FABRIS Jose D, et al. Activated carbon/iron oxide magnetic composites for the adsorption of contaminants in water[J]. Carbon, 2002, 40: 2177-2183. |
38 | WANG He, WANG Han, ZHAO Hui, et al. Adsorption and Fenton-like removal of chelated nickel from Zn-Ni alloy electroplating wastewater using activated biochar composite derived from Taihu blue algae[J]. Chemical Engineering Journal, 2020, 379: 122372-122383. |
39 | KUMAR Prashanth Suresh, PROT Thomas, KORVING Leon, et al. Effect of pore size distribution on iron oxide coated granular activated carbons for phosphate adsorption-Importance of mesopores[J]. Chemical Engineering Journal, 2017, 326: 231-239. |
40 | VENKATESWARLU Sada, Daeho LEE, YOON Minyoung. Bio-inspired 2D-carbon flakes and Fe3O4 nanoparticles composite for arsenite removal[J]. ACS Applied Materials & Interfaces, 2016, 36(8): 23876-23885. |
41 | WEI Yuanfeng, WEI Shudan, LIU Chengbin, et al. Effificient removal of arsenic from groundwater using iron oxide nanoneedle array-decorated biochar fibers with high Fe utilization and fast adsorption kinetics[J]. Water Research, 2019, 167: 115107-115116. |
42 | ZUO Xiaojun, CHEN Mindong, FU Dafang, et al. The formation of alpha-FeOOH onto hydrothermal biochar through H2O2 and its photocatalytic disinfection[J]. Chemical Engineering Journal, 2016, 294: 202-209. |
43 | RONG Xing, XIE Meng, KONG Lingshuai, et al. The magnetic biochar derived from banana peels as a persulfate activator for organic contaminants degradation[J]. Chemical Engineering Journal, 2019, 372: 294-303. |
44 | 李琪瑞, 许晨阳, 耿增超, 等. 纳米生物炭的制备方法比较及其特性研究[J].中国环境科学, 2020, 40(7): 3124-3134. |
LI Qirui, XU Chenyang, GENG Zengchao, et al. Preparation methods and properties of nanobiochars[J]. China Environmental Science, 2020, 40(7): 3124-3134. | |
45 | SHAN Danna, DENG Shubo, ZHAO Tianning, et al. Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling[J]. Journal of Hazardous Materials, 2016, 305: 156-163. |
46 | Honghong LYU, GAO Bin, HE Feng, et al. Ball-milled carbon nanomaterials for energy and environmental applications[J]. ACS Sustainable Chemistry Engineering, 2017, 5: 9568-9585. |
47 | Honghong LYU, GAO Bin, HE Feng, et al. Experimental and modeling investigations of ball-milled biochar for the removal of aqueous methylene blue[J]. Chemical Engineering Journal, 2018, 335: 110-119. |
48 | WILFERT Philipp, KUMAR Prashanth Suresh, KORVING Leon, et al. The relevance of phosphorus and iron chemistry to the recovery of phosphorus from wastewater: a review[J]. Environmental Science & Technology, 2015, 49: 9400-9414. |
49 | LI Ronghua, WANG Jim J, ZHOU Baoyue, et al. Recovery of phosphate from aqueous solution by magnesium oxide decorated magnetic biochar and its potential as phosphate-based fertilizer substitute[J]. Bioresource Technology, 2016, 215: 209-214. |
50 | TAN Xiaofei, LIU Yunguo, ZENG Guangming, et al. Application of biochar for the removal of pollutants from aqueous solutions[J]. Chemosphere, 2015, 125: 70-85. |
51 | DAI Yingjie, WANG Wensi, LU Lu, et al. Utilization of biochar for the removal of nitrogen and phosphorus[J]. Journal of Cleaner Production, 2020, 257: 120573. |
52 | REN Jing, LI Nan, LI Lei, et al. Granulation and ferric oxides loading enable biochar derived from cotton stalk to remove phosphate from water[J]. Bioresource Technology, 2015, 178: 119-125. |
53 | LI Jihui, Guohua LYU, BAI Wenbo, et al. Modification and use of biochar from wheat straw (Triticum aestivum L.) for nitrate and phosphate removal from water[J]. Desalination and Water Treatment, 2014, 57(10): 1-13. |
54 | 唐登勇, 黄越, 胥瑞晨, 等. 改性芦苇生物炭对水中低浓度磷的吸附特征[J]. 环境科学, 2016, 37(6): 2195-2201. |
TANG Dengyong, HUANG Yue, XU Ruichen, et al. Adsorption behavior of low concentration phosphorus from water onto modified reed biochar[J]. Environmental Science, 2016, 37(6): 2195-2201. | |
55 | Barbora MICHALEKOVA-RICHVEISOVA, FRISTAK Vladimír, PIPISKA Martin, et al. Iron-impregnated biochars as effective phosphate sorption materials[J]. Environmental Science and Pollution Research, 2016, 24(1): 463-475. |
56 | CAI Ru, WANG Xin, JI Xionghui, et al. Phosphate reclaim from simulated and real eutrophic water by magnetic biochar derived from water hyacinth[J]. Journal of Environmental Management, 2017, 187: 212-219. |
57 | YANG Qi, WANG Xiaolin, LUO Wei, et al. Effectiveness and mechanisms of phosphate adsorption on iron-modified biochars derived from waste activated sludge[J]. Bioresource Technology, 2018, 247: 537-544. |
58 | ZHU Zongqiang, HUANG C P, ZHU Yinian, et al. A hierarchical porous adsorbent of nano-α-Fe2O3/Fe3O4 on bamboo biochar (HPA-Fe/C-B) for the removal of phosphate from water[J]. Journal of Water Process Engineering, 2018, 25: 96-104. |
59 | JACK Joshua, HUGGINS Tyler M, HUANG Yingping, et al. Production of magnetic biochar from waste-derived fungal biomass for phosphorus removal and recovery[J]. Journal of Cleaner Production, 2019, 224: 100-106. |
60 | PIERCE Matthew L, MOORE Carleton B. Adsorption of arsenite and arsenate on amorphous iron hydroxide[J]. Water Research, 1982, 16: 1247-1253. |
61 | 胡小莲, 杨林章, 何世颖, 等. Fe3O4/BC复合材料的制备及其吸附除磷性能[J]. 环境科学研究, 2018, 31(1): 143-153. |
HU Xiaolian, YANG Linzhang, HE Shiying, et al. Preparation of Fe3O4/BC composite and its application for phosphate adsorptive removal[J]. Research of Environmental Sciences, 2018, 31(1): 143-153. | |
62 | TAWFIK Dan S, VIOLA Ronald E. Arsenate replacing phosphate-alternative life chemistries and ion promiscuity[J]. Biochemistry, 2011, 50: 1128-1134. |
63 | YAO Ying, GAO Bin, INYANG Mandu, et al. Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential[J]. Bioresource Technology, 2011, 102: 6273-6278. |
64 | JUNG, Kyung-Won, AHN, Kyu-Hong. Fabrication of porosity-enhanced MgO/biochar for removal of phosphate from aqueous solution: application of a novel combined electrochemical modification method[J]. Bioresource Technology, 2016, 200: 1029-1032. |
65 | 蔡茹. 负载铁生物炭对富营养化水体中磷的捕集与再利用[D]. 长沙: 湖南师范大学, 2017. |
CAI Ru. Capture and reuse of phosphorus in eutrophic water by iron—impregnated biochar[D]. Changsha: Hunan Normal University, 2017. | |
66 | ZHANG Hanzhi, CHEN Chengrong, GRAY Evan M, et al. Roles of biochar in improving phosphorus availability in soils: a phosphate adsorbent and a source of available phosphorus[J]. Geoderma, 2016, 276: 1-6. |
67 | WAN Stefan, WANG Shengsen, LI Yuncong, et al. Functionalizing biochar with Mg-Al and Mg-Fe layered double hydroxides for removal of phosphate from aqueous solutions[J]. Journal of Industrial and Engineering Chemistry, 2017, 47: 246-253. |
68 | NATH B K, CHALIHA C, KALITA E. Iron oxide permeated mesoporous rice-husk nanobiochar (IPMN) mediated removal of dissolved arsenic (As): chemometric modelling and adsorption dynamics[J]. Journal of Environmental Management, 2019, 246: 397-409. |
69 | HAN Yitong, CAO Xi, OUYANG Xin, et al. Adsorption kinetics of magnetic biochar derived from peanut hull on removal of Cr(Ⅵ) from aqueous solution: effects of production conditions and particle size[J]. Chemosphere, 2016, 145: 336-341. |
70 | YI Yunqiang, TU Guoquan, ZHAO Dongye, et al. Key role of FeO in the reduction of Cr() by magnetic biochar synthesised using steelpickling waste liquor and sugarcane bagasse[J]. Journal of Cleaner Production, 2020, 245: 118886. |
71 | LIU Liheng, LIU Xiu, WANG Dunqiu, et al. Removal and reduction of Cr(Ⅵ) in simulated wastewater using magnetic biochar prepared by co-pyrolysis of nano-zero-valent iron and sewage sludge[J]. Journal of Cleaner Production, 2020, 257: 120562. |
72 | YAPA M W, MUBARAKB N M, SAHU J N, et al. Microwave induced synthesis of magnetic biochar from agricultural biomass for removal of lead and cadmium from wastewater[J]. Journal of Industrial and Engineering Chemistry, 2017, 45: 287-295. |
73 | Eun-Bi SON, Kyung-Min POO, CHANG Jae-Soo, et al. Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass[J]. Science of the Total Environment, 2018, 615: 161-168. |
74 | YANG Fan, ZHANG Shuaishuai, LI Huipeng, et al. Corn straw-derived biochar impregnated with α-FeOOH nanorods for highly effective copper removal[J]. Chemical Engineering Journal, 2018, 348: 191-201. |
75 | 袁健, 钱雅洁, 薛罡, 等. 活性污泥水热碳化法制备磁性炭及对水体Cd2+及Pb2+的去除[J]. 环境工程, 2020, 38(2): 55-62. |
YUAN Jian, QIAN Yajie, XUE Gang, et al. Removal of cadmium and lead in water by magnetic carbon prepared from activated sludge with hydrothermal carbonization[J]. Environmental Engineering, 2020, 38(2): 55-62. | |
76 | INYANG Mandu I, GAO Bin, YAO Ying, et al. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal[J]. Critical Reviews in Environmental Science and Technology, 2016, 46: 406-433. |
77 | LI Hongbo, DONG Xiaoling, SILVA Evandro B DA, et al. Mechanisms of metal sorption by biochars: biochar characteristics and modifications[J]. Chemosphere, 2017, 178: 466-478. |
78 | YE Yuxuan, SHAN Chao, ZHANG Xiaolin, et al. Water decontamination from Cr(Ⅲ)-organic complexes based on pyrite/H2O2: performance, mechanism, and validation[J]. Environmental Science & Technology, 2018, 52: 10657-10664. |
79 | 赵云平. 布洛芬在铁氧化物改性生物炭上的吸附特征研究[D]. 北京: 中国地质大学(北京), 2018. |
ZHAO Yunping. Sorption characteristics of ibuprofen to iron oxide modified biochars[D]. Beijing: China University of Geosciences (Beijing), 2018. | |
80 | REGUYALA Febelyn, SARMAHA Ajit K. Site energy distribution analysis and influence of Fe3O4 nanoparticles on sulfamethoxazole sorption in aqueous solution by magnetic pine sawdust biochar[J]. Environmental Pollution, 2018, 233: 510-519. |
81 | DONG Chengdi, CHEN Chiuwen, HUNG Changmao. Synthesis of magnetic biochar from bamboo biomass to activate persulfate for the removal of polycyclic aromatic hydrocarbons in marine sediments[J]. Bioresource Technology, 2017, 245: 188-195. |
82 | CHEN Yidi, BAI Shunwen, LI Ruixiang, et al. Magnetic biochar catalysts from anaerobic digested sludge: production, application and environment impact[J]. Environment International, 2019, 126: 302-308. |
83 | YUAN Shijie, LIAO Nianhua, DONG Bin, et al. Optimization of a digested sludge-derived mesoporous material as an efficient and stable heterogeneous catalyst for the photo-Fenton Reaction[J]. Chinese Journal of Catalysis, 2016, 37: 735-742. |
84 | PARK Jong-Hwan, WANG Jim J, XIAO Ran, et al. Degradation of Orange G by Fenton-like reaction with Fe-impregnated biochar catalyst[J]. Bioresource Technology, 2018, 249: 368-376. |
85 | ZHANG He, XUE Gang, CHEN Hong, et al. Magnetic biochar catalyst derived from biological sludge and ferric sludge using hydrothermal carbonization: preparation, characterization and its circulation in Fenton process for dyeing wastewater treatment[J]. Chemosphere, 2018, 191: 64-71. |
86 | Antoine TIYA-DJOWE, DOURGES Marie-Anne, BRUNEEL Jean-Luc, et al. Plasma-deposition of α-FeOOH particles on biochar using a gliding arc discharge in humid air: a green and sustainable route for producing oxidation catalysts[J]. RSC Advance, 2019, 9: 4797-4805. |
87 | PARK Jong-Hwan, WANG Jim J. TAFTI Negar,et al. Removal of Eriochrome Black T by sulfate radical generated from Fe-impregnated biochar/persulfate in Fenton-like reaction[J]. Journal of Industrial and Engineering Chemistry, 2019, 71: 201-209. |
88 | YIN Renli, GUO Wanqian, WANG Huazhe, et al. Singlet oxygen-dominated peroxydisulfate activation by sludge-derived biochar for sulfamethoxazole degradation through a nonradical oxidation pathway: performance and mechanism[J]. Chemical Engineering Journal, 2019, 357: 589-599. |
89 | WANG Shizong, WANG Jianlong. Activation of peroxymonosulfate by sludge-derived biochar for the degradation of triclosan in water and wastewater[J]. Chemical Engineering Journal, 2019, 356: 350-358. |
90 | DUAN Xiaoguang, SUN Hongqi, KANG Jian, et al. Insights into heterogeneous catalysis of persulfate activation on dimensional-structured nanocarbons[J]. ACS Catalysis, 2015, 5: 4629-4636. |
91 | JIANG Shunfeng, LING Lili, CHEN Wenjing, et al. High efficient removal of bisphenol A in a peroxymonosulfate/iron functionalized biochar system: mechanistic elucidation and quantification of the contributors[J]. Chemical Engineering Journal, 2019, 359: 572-583. |
92 | 肖鹏飞, 安璐, 韩爽. 炭质材料在活化过硫酸盐高级氧化技术中的应用进展[J]. 化工进展, 2020, 39(8): 3293-3307. |
XIAO Pengfei, AN Lu, HAN Shuang. Novel progress on application of carbon materials in advanced oxidation technology of activated persulfate[J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3293-3307. | |
93 | WANG Huazhe, GUO Wanqian, YIN Renli, et al. Biochar-induced Fe() reduction for persulfate activation in sulfamethoxazole degradation: insight into the electron transfer, radical oxidation and degradation pathways[J]. Chemical Engineering Journal, 2019, 362: 561-569. |
94 | HUANG Baocheng, JIANG Jun, HUANG Guixiang, et al. Sludge biochar-based catalyst for improved pollutant degradation by activating peroxymonosulfate[J]. Journal of Materials Chemistry A, 2018, 6: 8978-8985. |
95 | 陈丹丹, 窦昱昊, 卢平. 等. 污泥深度脱水技术研究进展[J]. 化工进展, 2019, 38(10): 4722-4746. |
CHEN Dandan, DOU Yuhao, LU Ping, et al. A review on sludge deep dewatering technology[J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4722-4746. | |
96 | WU Yan, ZHANG Panyue, ZENG Guangming, et al. Enhancing sewage sludge dewaterability by a skeleton builder: biochar produced from sludge cake conditioned with rice husk flour and FeCl3[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(10): 5711-5717. |
97 | WU Yan, ZHANG Panyue, ZHANG Haibo, et al. Possibility of sludge conditioning and dewatering with rice husk biochar modified by ferric chloride[J]. Bioresource Technology, 2016, 205: 258-263. |
98 | HE Dongqin, WANG Longfei, JIANG Hong, et al. A Fenton-like process for the enhanced activated sludge dewatering[J]. Chemical Engineering Journal, 2015, 272: 128-134. |
99 | TAO Shuangyi, YANG Jiakuan, HUO Huijie, et al. Enhanced sludge dewatering via homogeneous and heterogeneous Fenton reactions initiated by Fe-rich biochar derived from sludge[J]. Chemical Engineering Journal, 2019, 372: 966-977. |
100 | RUALES-LONFAT C, BARONA J F, SIENKIEWICZ A, et al. Iron oxides semiconductors are efficients for solar water disinfection: a comparison with photo-Fenton processes at neutral pH[J]. Applied Catalysis B: Environmental, 2015, 166/167: 497-508. |
[1] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[2] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[3] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[4] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[5] | 王莹, 韩云平, 李琳, 李衍博, 李慧丽, 颜昌仁, 李彩侠. 城市污水厂病毒气溶胶逸散特征研究现状与未来展望[J]. 化工进展, 2023, 42(S1): 439-446. |
[6] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[7] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[8] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[9] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[10] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[11] | 王浩然, 殷全玉, 方明, 侯建林, 李军, 何斌, 张明月. 近临界水处理废弃烟梗工艺优化[J]. 化工进展, 2023, 42(9): 5019-5027. |
[12] | 张振, 李丹, 陈辰, 吴菁岚, 应汉杰, 乔浩. 吸附树脂对唾液酸的分离纯化[J]. 化工进展, 2023, 42(8): 4153-4158. |
[13] | 姜晶, 陈霄宇, 张瑞妍, 盛光遥. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397. |
[14] | 于静文, 宋璐娜, 刘砚超, 吕瑞东, 武蒙蒙, 冯宇, 李忠, 米杰. 一种吲哚基超交联聚合物In-HCP对水中碘的吸附作用[J]. 化工进展, 2023, 42(7): 3674-3683. |
[15] | 李艳玲, 卓振, 池亮, 陈曦, 孙堂磊, 刘鹏, 雷廷宙. 氮掺杂生物炭的制备与应用研究进展[J]. 化工进展, 2023, 42(7): 3720-3735. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |