化工进展 ›› 2021, Vol. 40 ›› Issue (2): 959-968.DOI: 10.16085/j.issn.1000-6613.2020-0716
收稿日期:
2020-04-30
修回日期:
2020-06-23
出版日期:
2021-02-05
发布日期:
2021-02-09
通讯作者:
郑旭
作者简介:
陈康(1998—),男,硕士研究生,研究方向为复合材料及除湿空调技术。E-mail:基金资助:
Kang CHEN(), Yan ZHU, Xu ZHENG()
Received:
2020-04-30
Revised:
2020-06-23
Online:
2021-02-05
Published:
2021-02-09
Contact:
Xu ZHENG
摘要:
干燥剂换热器克服了干燥剂吸水升温导致吸水能力下降的缺点,还可实现太阳能、工业废热等低品位热源的利用,具有较好的除湿能力和节能潜力。干燥剂的特性决定着干燥剂换热器系统的除湿性能。相比于硅胶、沸石等常规干燥剂,吸湿性聚合物在吸水量上存在着巨大优势,而通过掺杂硅胶、无机盐等制得的聚合物基复合干燥剂的吸湿性能更优。近年来,越来越多的国内外学者对吸湿性聚合物在干燥剂换热器系统中的应用进行研究。本文将吸湿性聚合物分为天然和合成两大类,详细介绍了其性能特点以及在干燥剂换热器系统中的除湿性能研究,其中合成类主要包括聚合物电解质、金属-有机骨架化合物和聚合物基复合干燥剂。同时,还对干燥剂换热器中的黏结剂进行了分析和总结。最后对吸湿性聚合物和黏结剂今后的发展方向进行了展望。
中图分类号:
陈康, 朱燕, 郑旭. 干燥剂换热器系统用吸湿性聚合物材料研究进展[J]. 化工进展, 2021, 40(2): 959-968.
Kang CHEN, Yan ZHU, Xu ZHENG. Recent progress of hygroscopic polymers for desiccant coated heat exchanger systems[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 959-968.
聚合物电解质 | 吸附条件 /℃,RH/% | 吸湿量 /gH2O·g-1Ads | 再生条件/℃,RH/% |
---|---|---|---|
聚丙烯酸钠[ | 30,70 | 0.62 | 50,70 |
聚丙烯酸钠[ | 30,80 | 0.63 | 50,70 |
IR100Na[ | 25,80 | 0.06 | 30~150,— |
IR100Mg[ | 25,80 | 0.18 | 30~150,— |
IR100Li[ | 25,80 | 0.22 | 30~150,— |
poly-Na[ | 20,70 | 0.61 | — |
poly-K[ | 20,70 | 0.17 | — |
表1 聚合物电解质的吸附和再生性能参数
聚合物电解质 | 吸附条件 /℃,RH/% | 吸湿量 /gH2O·g-1Ads | 再生条件/℃,RH/% |
---|---|---|---|
聚丙烯酸钠[ | 30,70 | 0.62 | 50,70 |
聚丙烯酸钠[ | 30,80 | 0.63 | 50,70 |
IR100Na[ | 25,80 | 0.06 | 30~150,— |
IR100Mg[ | 25,80 | 0.18 | 30~150,— |
IR100Li[ | 25,80 | 0.22 | 30~150,— |
poly-Na[ | 20,70 | 0.61 | — |
poly-K[ | 20,70 | 0.17 | — |
金属有机骨架 | 比表面积/m2·g-1 | 比孔容/cm3·g-1 | 吸附条件/℃,P/P0 | 吸湿量/gH2O·g-1Ads | 再生温度/℃ |
---|---|---|---|---|---|
MIL-100(Al)[ | 1970 | — | 30,0.8 | 0.76 | 70 |
MIL-100(Fe)[ | 2300±100 | — | 30,0.8 | 0.90 | 70 |
MIL-100(Cr)[ | 1980 | — | 30,0.8 | 0.72 | 70 |
MIL-101(Cr)[ | 2059 | 1.103 | 25,0.7 | 0.92 | 90 |
MIL-100(F)[ | 1517 | — | 25, 0.5 | 0.68 | 80 |
MIL-100(Cl)[ | 1522 | — | 25,0.5 | 0.60 | 80 |
MIL-101-H[ | 3124 | 1.56 | 25,0.6 | 1.3 | 80 |
MIL-101-NH2[ | 2146 | 1.22 | 25,0.6 | 0.94 | 80 |
MIL-101-NO2[ | 2509 | 1.07 | 25,0.6 | 0.93 | 80 |
MIL-101-SO3H[ | 1920 | 0.92 | 25,0.6 | 0.68 | 80 |
NH2-MIL-125[ | 1320±20 | 0.56±0.01 | 20,— | 0.42 | 75~90 |
NH2-MIL-125[ | 1320±20 | 0.56±0.01 | 30,— | 0.39 | 110 |
表2 常见MIL类金属有机骨架化合物性能参数
金属有机骨架 | 比表面积/m2·g-1 | 比孔容/cm3·g-1 | 吸附条件/℃,P/P0 | 吸湿量/gH2O·g-1Ads | 再生温度/℃ |
---|---|---|---|---|---|
MIL-100(Al)[ | 1970 | — | 30,0.8 | 0.76 | 70 |
MIL-100(Fe)[ | 2300±100 | — | 30,0.8 | 0.90 | 70 |
MIL-100(Cr)[ | 1980 | — | 30,0.8 | 0.72 | 70 |
MIL-101(Cr)[ | 2059 | 1.103 | 25,0.7 | 0.92 | 90 |
MIL-100(F)[ | 1517 | — | 25, 0.5 | 0.68 | 80 |
MIL-100(Cl)[ | 1522 | — | 25,0.5 | 0.60 | 80 |
MIL-101-H[ | 3124 | 1.56 | 25,0.6 | 1.3 | 80 |
MIL-101-NH2[ | 2146 | 1.22 | 25,0.6 | 0.94 | 80 |
MIL-101-NO2[ | 2509 | 1.07 | 25,0.6 | 0.93 | 80 |
MIL-101-SO3H[ | 1920 | 0.92 | 25,0.6 | 0.68 | 80 |
NH2-MIL-125[ | 1320±20 | 0.56±0.01 | 20,— | 0.42 | 75~90 |
NH2-MIL-125[ | 1320±20 | 0.56±0.01 | 30,— | 0.39 | 110 |
聚合物基复合干燥剂 | 吸附条件 /℃,P·P0-1 | 吸湿量 /gH2O·g-1Ads | 再生温度 /℃ | 性能改善点 |
---|---|---|---|---|
PAAS/LiCl[ | 25, 99 | 2.96 | <80 | 加入氯化锂后聚丙烯酸钠的吸湿量增加了一倍 |
MIL-101(Cr)/GrO[ | 25, 90 | 1.24 | — | 提高了MIL-101(Cr)的热导率 |
SG/PAA/PAAS[ | 25, 70 | 0.24 | 40~50 | 复合材料的吸湿量高出硅胶41%,复合材料除湿床的压降比硅胶除湿床低69% |
MIL-101(Cr)/CaCl2[ | 25, 90 | 1.35 | — | 吸湿性随氯化钙的浓度的升高而提高 |
PVA/LiCl[ | 30, 80 | 1.77 | 60 | 加入氯化锂后聚乙烯醇的吸湿量提高,吸湿速度快,PLCHE的除湿能力和COPth有所提高 |
PAAS/LiCl[ | 30, 80 | 2.32 | 60 | PAAS/LiCl的吸湿量比PVA/LiCl更高,除湿性能更好 |
MIL-101(Cr)@GO[ | 25, 90 | 1.58 | 60 | 提高了吸湿量,具有良好的再生特性和热稳定性 |
表3 聚合物基干燥剂的吸附和再生性能
聚合物基复合干燥剂 | 吸附条件 /℃,P·P0-1 | 吸湿量 /gH2O·g-1Ads | 再生温度 /℃ | 性能改善点 |
---|---|---|---|---|
PAAS/LiCl[ | 25, 99 | 2.96 | <80 | 加入氯化锂后聚丙烯酸钠的吸湿量增加了一倍 |
MIL-101(Cr)/GrO[ | 25, 90 | 1.24 | — | 提高了MIL-101(Cr)的热导率 |
SG/PAA/PAAS[ | 25, 70 | 0.24 | 40~50 | 复合材料的吸湿量高出硅胶41%,复合材料除湿床的压降比硅胶除湿床低69% |
MIL-101(Cr)/CaCl2[ | 25, 90 | 1.35 | — | 吸湿性随氯化钙的浓度的升高而提高 |
PVA/LiCl[ | 30, 80 | 1.77 | 60 | 加入氯化锂后聚乙烯醇的吸湿量提高,吸湿速度快,PLCHE的除湿能力和COPth有所提高 |
PAAS/LiCl[ | 30, 80 | 2.32 | 60 | PAAS/LiCl的吸湿量比PVA/LiCl更高,除湿性能更好 |
MIL-101(Cr)@GO[ | 25, 90 | 1.58 | 60 | 提高了吸湿量,具有良好的再生特性和热稳定性 |
黏结剂名称 | 类型 | 干燥剂 | 涂覆工艺 | 性能特性 |
---|---|---|---|---|
聚硅氧烷基黏结剂[ | 有机 | 富马酸铝 | 浸渍法 | 换热效果改善;耐久性好 |
环氧树脂[ | 有机 | 硅胶 | 浸渍法 | 比表面积低;固化后呈褐变趋势 |
膨润土[ | 无机 | 硅胶 | 浸渍法 | 黏结性能较差 |
明胶[ | 有机 | 硅胶 | 浸渍法 | 黏结性能较好;换热器系统运行时干燥剂有脱落 |
海泡石[ | 无机 | 硅胶 | 浸渍法 | 黏结性能较差 |
羟乙基纤维素[ | 有机 | 硅胶和石墨 | 浸渍法 | 黏结性能好;对吸湿性影响小 |
氢氧化铝[ | 无机 | 沸石 4A | 合成法 | 黏结性能一般;导热性提高 |
聚乙烯醇[ | 有机 | AIPO-18 | 浸渍法 | 对吸湿量影响小;黏结性能较好;吸附热略有增加 |
聚苯胺[ | 有机 | 沸石 13X | 合成法 | 提高导热性;不影响吸附能力 |
泡沫金属[ | 无机 | 沸石NaX | 浸渍法 | 孔隙率高;传热、传质效果改善 |
聚四氟乙烯[ | 有机 | 钙十字沸石 | 浸渍法 | 提高导热性;机械性能好;黏结性能好,干燥剂无脱落 |
聚乙烯吡咯烷酮[ | 有机 | 硅胶 | 合成法 | 换热效果改善;对干燥剂的吸水性影响小 |
硅烷类黏结剂[ | 有机 | SAPO-34 | 浸渍法 | 机械稳定性提高;对干燥剂的孔隙率无影响 |
表4 黏结剂对干燥剂换热器性能的影响
黏结剂名称 | 类型 | 干燥剂 | 涂覆工艺 | 性能特性 |
---|---|---|---|---|
聚硅氧烷基黏结剂[ | 有机 | 富马酸铝 | 浸渍法 | 换热效果改善;耐久性好 |
环氧树脂[ | 有机 | 硅胶 | 浸渍法 | 比表面积低;固化后呈褐变趋势 |
膨润土[ | 无机 | 硅胶 | 浸渍法 | 黏结性能较差 |
明胶[ | 有机 | 硅胶 | 浸渍法 | 黏结性能较好;换热器系统运行时干燥剂有脱落 |
海泡石[ | 无机 | 硅胶 | 浸渍法 | 黏结性能较差 |
羟乙基纤维素[ | 有机 | 硅胶和石墨 | 浸渍法 | 黏结性能好;对吸湿性影响小 |
氢氧化铝[ | 无机 | 沸石 4A | 合成法 | 黏结性能一般;导热性提高 |
聚乙烯醇[ | 有机 | AIPO-18 | 浸渍法 | 对吸湿量影响小;黏结性能较好;吸附热略有增加 |
聚苯胺[ | 有机 | 沸石 13X | 合成法 | 提高导热性;不影响吸附能力 |
泡沫金属[ | 无机 | 沸石NaX | 浸渍法 | 孔隙率高;传热、传质效果改善 |
聚四氟乙烯[ | 有机 | 钙十字沸石 | 浸渍法 | 提高导热性;机械性能好;黏结性能好,干燥剂无脱落 |
聚乙烯吡咯烷酮[ | 有机 | 硅胶 | 合成法 | 换热效果改善;对干燥剂的吸水性影响小 |
硅烷类黏结剂[ | 有机 | SAPO-34 | 浸渍法 | 机械稳定性提高;对干燥剂的孔隙率无影响 |
1 | 王凌杰, 杨昌盛. 除湿空调机组的能耗分析及其选择应用[J]. 装备制造技术, 2019, 8: 84-86,91. |
WANG Lingjie, YANG Changsheng. Energy consumption analysis and application of dehumidification air conditioning units[J]. Equipment Manufacturing Technology, 2019, 8: 84-86, 91. | |
2 | 田向宁, 杨毅, 丁德, 等. 空气冷却除湿过程的理论研究[J]. 暖通空调, 2014, 44(1): 121-124. |
TIAN Xiangning, YANG Yi, DING De, et al. Theoretical research on air cooling dehumidification process[J]. Heating Ventilating & Air Conditioning, 2014, 44(1): 121-124. | |
3 | AHMED M A, QASEM N A, ZUBAIR S M, et al. Thermodynamic balancing of the regeneration process in a novel liquid desiccant cooling/desalination system[J]. Energy Conversion and Management, 2018, 176: 86-98. |
4 | 陈捷超, 黄宏宇, 何兆红, 等. 转轮除湿系统优化技术研究进展[J]. 新能源进展, 2017, 5(6): 457-465. |
CHEN Jiechao, HANG Hongyu, HE Zhaohong, et al. Research progress of optimizations for rotary desiccant wheel[J]. Advances in New and Renewable Energy, 2017, 5(6): 457-465. | |
5 | VIVEKH P, KUMJA M, BUI D T, et al. Recent developments in solid desiccant coated heat exchangers-a review[J]. Applied Energy, 2018, 229: 778-803. |
6 | TU Y D, WANG R Z, HUA L J, et al. Desiccant-coated water-sorbing heat exchanger: weakly-coupled heat and mass transfer[J]. International Journal of Heat and Mass Transfer, 2017, 113: 22-31. |
7 | GE T S, DAI Y J, WANG R Z. Simulation investigation on solar powered desiccant coated heat exchanger cooling system[J]. Applied Energy, 2012, 93: 532-540. |
8 | 刘林, 何兆红, 陈捷超, 等. 固体除湿复合干燥剂研究进展[J]. 新能源进展, 2017, 5(5): 377-385. |
LIU Lin, HE Zhaohong, CHEN Jiechao, et al. Development on solid composite desiccants for desiccant cooling systems[J]. Advances in New and Renewable Energy, 2017, 5(5): 377-385. | |
9 | OH S J, NG K C, CHUN W, et al. Evaluation of a dehumidifier with adsorbent coated heat exchangers for tropical climate operations[J]. Energy, 2017, 137: 441-448. |
10 | ZHENG X, WANG R Z, GE T S, et al. Performance study of SAPO-34 and FAPO-34 desiccants for desiccant coated heat exchanger systems[J]. Energy, 2015, 93: 88-94. |
11 | ZHENG X, GE T S, JIANG Y, et al. Experimental study on silica gel-LiCl composite desiccants for desiccant coated heat exchanger[J]. International Journal of Refrigeration, 2015, 51: 24-32. |
12 | DONOHUE M D, ARANOVICH G L. Classification of Gibbs adsorption isotherms[J]. Advances in Colloid and Interface Science, 1998, 76: 137-152. |
13 | 王勇, 刘静, 张亚茹, 等. 高分子干燥剂的研究进展[J]. 现代化工, 2019, 39(S1): 99-103. |
WANG Yong, LIU Jing, ZHANG Yaru, et al. Advances in polymer desiccant[J]. Modern Chemical Industry, 2019, 39(S1): 99-103. | |
14 | YANG Y F, RANA D, LAN C Q. Development of solid super desiccants based on a polymeric superabsorbent hydrogel composite[J]. RSC Advances, 2015, 5(73): 59583-59590. |
15 | CHANG C C, LUO W J, LU C W, et al. Effects of process air conditions and switching cycle period on dehumidification performance of desiccant-coated heat exchangers[J]. Science and Technology for the Built Environment, 2017, 23(1): 81-90. |
16 | 韩月云, 曹奇领, 化全县, 等. 有机/无机复合高吸水树脂的制备及性能[J]. 化工学报, 2015, 66(9): 3795-3800. |
HAN Yueyun, CAO Qiling, HUA Quanxian, et al. Synthesis and properties of organic/inorganic superabsorbent resin[J]. CIESC Jorunal, 2015, 66(9): 3795-3800. | |
17 | KAZEMINEJADFARD F, HOJJATI M R. Preparation of superabsorbent composite based on acrylic acid-hydroxypropyl distarch phosphate and clinoptilolite for agricultural applications(Article)[J]. Journal of Applied Polymer Science, 2019, 136(16): 47365-47379. |
18 | 冯晓琦, 邓卫波, 申峻, 等. 分子筛改性羧甲基纤维素类高吸水性树脂研究[J]. 化工新型材料, 2012, 40(10): 37-39. |
FENG Xiaoqi, DENG Weibo, SHEN Jun, et al. Study on the carbonoxymethyl cellulose superabsorbent modified by molecular sieve[J]. New Chemical Materials, 2012, 40(10): 37-39. | |
19 | ENTEZARI A, EJEIAN M, WANG R Z. Super atmospheric water harvesting hydrogel with alginate chains modified with binary salts[J]. ACS Materials Letters, 2020, 2: 471-477. |
20 | ZHENG X, CHEN K, LIN Z. Synthesis and characterization of alginate-silica gel composites for adsorption dehumidification[J]. Industrial & Engineering Chemistry Research, 2020, 59(13): 5760-5767. |
21 | SULTAN M, EL-SHARKAWY I I, MIYAZAKI T, et al. Water vapor sorption kinetics of polymer based sorbents: theory and experiments[J]. Applied Thermal Engineering, 2016, 106: 192-202. |
22 | TORIBIO F, BELLAT J P, NGUYEN P H, et al. Adsorption of water vapor by poly(styrene) sulfonic acid sodium salt—isothermal and isobaric adsorption equilibria[J]. HVAC& R Research, 2005, 11(2): 305-317. |
23 | WHITE S D, GOLDSWORTHY M, REECE R, et al. Characterization of desiccant wheels with alternative materials at low regeneration temperatures[J]. International Journal of Refrigeration, 2011, 34(8): 1786-1791. |
24 | FANG Y T, ZUO S Q, LIANG X H, et al. Preparation and performance of desiccant coating with modified ion exchange resin on finned tube heat exchanger[J]. Applied Thermal Engineering, 2016, 93: 36-42. |
25 | INABA H, KOMATSU F, HORIBE A, et al. Sorption characteristics of sorption material coated on heat transfer surface of a heat exchanger[J]. Thermal Science and Engineering, 2007, 15(3): 141-150. |
26 | LEE J, LEE D Y. Sorption characteristics of a novel polymeric desiccant[J]. International Journal of Refrigeration, 2012, 35(7): 1940-1949. |
27 | GE T S, DAI Y J, WANG R Z, et al. Experimental comparison and analysis on silica gel and polymer coated fin-tube heat exchangers[J]. Energy, 2010, 35(7): 2893-2900. |
28 | HIGASHI T, ZHANG L, SAIKAWA M, et al. Theoretical and experimental studies on isothermal adsorption and desorption characteristics of a desiccant-coated heat exchanger[J]. International Journal of Refrigeration, 2017, 84: 228-237. |
29 | 于博, 郑旭. 离子改性的聚丙烯酸除湿换热器系统性能研究[J]. 制冷学报, 2020, 41(2): 71-77. |
YU Bo, ZHENG Xu. Study on the system performance of desiccant coated heat exchanger with ion modified polyacrylic acid salt[J]. Journal of Refrigeration, 2020, 41(2): 71-77. | |
30 | JANIAK C, HENNINGER S K. Porous coordination polymers as novel sorption materials for heat transformation processes[J]. Chimia, 2013, 67(6): 419-424. |
31 | MOGHADAM P Z, LI A, WIGGIN S B, et al. Development of a Cambridge structural database subset: acollection of metal-organic frameworks for past, present, and future[J]. Chemistry of Materials, 2017, 29: 2618-2625. |
32 | HENNINGER S K, JEREMIAS F, KUMMER H, et al. MOFs for use in adsorption heat pump processes[J]. European Journal of Inorganic Chemistry, 2012 (16): 2625-2634. |
33 | KUMMER H, JEREMIAS F, WARLO A, et al. A functional full-scale heat exchanger coated with aluminum fumarate metal-organic framework for adsorption heat transformation[J]. Industrial & Engineering Chemistry Research, 2017, 56(29): 8393-8398. |
34 | AL-DADAH R, MAHMOUD S, ELSAYED E. Metal-organic framework materials for adsorption heat pumps[J]. Energy, 2020, 190: 116356. |
35 | MCGUIRE C V, FORGAN R S. The surface chemistry of metal-organic frameworks[J]. Chemical Communications, 2015, 51: 5199-5217. |
36 | SEO Y K, YOON J W, LEE J S, et al. Energy-efficient dehumidification over hierarchically porous metal-organic frameworks as advanced water adsorbents[J]. Advanced Materials, 2012, 24(6): 806-810. |
37 | EHRENMANN J, HENNINGER S K, JANIAK C. Water adsorption characteristics of MIL-101 for heat-transformation applications of MOFs[J]. Eur. J. Inorg. Chem., 2011, 2011, 4: 471-474. |
38 | AKIYAMA G, MATSUDA R, KITAGAWA S. Highly porous and stable coordination polymers as water sorption materials[J]. Chem. Lett., 2010, 39(4): 360-361. |
39 | AKIYAMA G, MATSUDA R, SATO H, et al. Effect of functional groups in MIL-101 on water sorption behavior[J]. Microporous and Mesoporous Materials, 2012, 157 (15): 89-93. |
40 | GORDEEVA L G, SOLOVYEVA M V, ARISTOV Y I. NH2-MIL-125 as a promising material for adsorptive heat transformation and storage[J]. Energy, 2016, 100: 18-24. |
41 | CHEN C H, HSU C Y, CHEN C C, et al. Silica gel polymer composite desiccants for air conditioning systems[J]. Energy and Buildings, 2015, 101: 122-132. |
42 | CAO B Y, TU Y D, WANG R Z. A moisture-penetrating humidity pump directly powered by one-sun illumination[J]. iScience, 2019, 15: 502-513. |
43 | CORTÉS F B, CHEJNE F, CARRASCO-MARÍN F, et al. Water sorption on silica- and zeolite-supported hygroscopic salts for cooling system applications[J]. Energy Conversion & Management, 2012, 53(1): 219-223. |
44 | ELSAYED E, ANDERSON P, RAYA A D, et al. MIL-101(Cr)/calcium chloride composites for enhanced adsorption cooling and water desalination[J]. Journal of Solid State Chemistry, 2019, 277: 123-132. |
45 | VIVEKH P. BUI D T, WONG Y,et al. Performance evaluation of PVA-LiCl coated heat exchangers for next-generation of energy-efficient dehumidification[J]. Applied Energy, 2019, 237: 733-750. |
46 | VIVEKH P, ISLAM M R, CHUA K J. Experimental performance evaluation of a composite superabsorbent polymer coated heat exchanger based air dehumidification system[J]. Applied Energy, 2020, 260: 114256. |
47 | YAN J, YU Y, MA C, et al. Adsorption isotherms and kinetics of water vapor on novel adsorbents MIL-101(Cr)@GO with super-high capacity[J]. Applied Thermal Engineering, 2015, 84: 118-125. |
48 | LI A, THU K, ISMAIL A B, et al. Performance of adsorbent-embedded heat exchangers using binder-coating method[J]. International Journal of Heat and Mass Transfer, 2016, 92: 149-157. |
49 | YANAGI H, INO N. Heat and mass transfer characteristics in consolidated silica gel/water adsorption-cooling system[C]. ASME1997Turbo Asia Conference. American Society of Mechanical Engineers, Singapore. 1997. |
50 | PINO L, ARISTOV Y I, CACCIOLA G, et al. Composite materials based on zeolite 4A for adsorption heat pumps[J]. Adsorption, 1997, 3: 33-40. |
51 | CHANG K S, CHEN M T, CHUNG T W. Effects of the thickness and particle size of silica gel on the heat and mass transfer performance of a silica gel-coated bed for air conditioning adsorption systems[J]. Appl. Therm. Eng., 2005, 25: 2330-2340. |
52 | WANG L, ZHU D, TAN Y. Heat transfer enhancement on the adsorber of adsorption heat pump[J]. Adsorption, 1999, 5: 279-286. |
53 | GUILLEMINOT J J, CHOISIER A, CHALFEN J B, et al. Heat transfer intensification in fixed bed adsorbers[J]. Heat Recovery Systems and CHP, 1993, 13: 297-300. |
54 | BASILE A, CACCIOLA G, COLELLA C, et al. Thermal conductivity of natural zeolite-PTFE composites[J]. Heat Recovery Systems and CHP, 1992, 12: 497-503. |
55 | YOUNES M M, EL-SHARKAWY I I, KABEEL A E, et al. Synthesis and characterization of silica gel composite with polymer binders for adsorption cooling applications[J]. International Journal of Refrigeration, 2019, 98: 161-170. |
56 | CALABRESE L, BRANCATO V, BONACCORSI L, et al. Development and characterization of silane-zeolite adsorbent coatings for adsorption heat pump applications[J]. Applied Thermal Engineering, 2017, 116: 364-371. |
57 | GU S Y, HSIEH C T, LIN W C, et al. Thermal transport on composite thin films using graphene nanodots and polymeric binder[J]. Thin Solid Films, 2020, 693: 137704. |
58 | 郑旭. 小温差再生的干燥剂的优选及其在除湿换热器中的应用[D].上海: 上海交通大学, 2016. |
ZHENG Xu. Optimization and application of desiccant materials in desiccant coated heat exchanger[D]. Shanghai: Shanghai Jiao Tong University, 2016. | |
59 | 孙若楠, 于慧, 张俊仪, 等. 绢云母/聚丙烯酰胺/壳聚糖高吸水树脂的制备研究[J]. 广州化工, 2018, 46(23): 50-53. |
SUN Ruonan, YU Hui, ZHANG Junyi, et al. Preparation of sericite/polyacrylamide/chitosan composite superabsorbent resin[J]. Guangzhou Chemical Industry, 2018, 46(23): 50-53. | |
60 | GE T S, ZHANG J Y, DAI Y J, et al. Experimental study on performance of silica gel and potassium formate composite desiccant coated heat exchanger[J]. Energy, 2017, 141: 149-158. |
61 | VALAREZO A S, SUN X Y, GE T S, et al. Experimental investigation on performance of a novel composite desiccant coated heat exchanger in summer and winter seasons[J]. Energy, 2019, 166: 506-518. |
62 | KIM H, KIM J, LEE S J. Fast and efficient water absorption material inspired by cactus root[J]. ACS Macro Letters, 2018, 7(3): 387-394. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[4] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[5] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[6] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[7] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[8] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[9] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[10] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[11] | 朱传强, 茹晋波, 孙亭亭, 谢兴旺, 李长明, 高士秋. 固体高分子脱硝剂选择性非催化还原NO x 特性[J]. 化工进展, 2023, 42(9): 4939-4946. |
[12] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[13] | 张振, 李丹, 陈辰, 吴菁岚, 应汉杰, 乔浩. 吸附树脂对唾液酸的分离纯化[J]. 化工进展, 2023, 42(8): 4153-4158. |
[14] | 李伯耿, 罗英武, 刘平伟. 聚合物产品工程研究内容与方法的思考[J]. 化工进展, 2023, 42(8): 3905-3909. |
[15] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |