化工进展 ›› 2021, Vol. 40 ›› Issue (1): 550-558.DOI: 10.16085/j.issn.1000-6613.2020-0545
陈思1,2(), 胡腾飞1,2, 于永波1,2, 王冰鑫1,2, 洪俊明1,2, 张倩1,2()
收稿日期:
2020-04-08
出版日期:
2021-01-05
发布日期:
2021-01-12
通讯作者:
张倩
作者简介:
陈思(1998—),女,硕士研究生,研究方向为水污染控制工程。E-mail:基金资助:
Si CHEN1,2(), Tengfei HU1,2, Yongbo YU1,2, Bingxin WANG1,2, Junming HONG1,2, Qian ZHANG1,2()
Received:
2020-04-08
Online:
2021-01-05
Published:
2021-01-12
Contact:
Qian ZHANG
摘要:
电极作为影响污染物电催化氧化效率与路径的最主要因素,是电催化效率提升的重要突破口。本研究以氧化石墨烯(GO)为碳源,以二苯二硫醚作为硫源,合成硫掺杂石墨烯(SGN)电极,用于电催化降解甲基橙染料。利用扫描电子显微镜、透射电子显微镜、红外光谱、拉曼光谱、X射线光电子能谱等对材料进行表征。考察电解质、外加电流、初始pH等因素对降解过程的影响。研究结果表明,硫掺杂能有效提升石墨烯材料的电催化性能。在初始pH=3、甲基橙浓度为10mg/L、电解质为NaCl、外加电流为30mA且实验温度为20℃的最佳条件下,反应35min可以达到98.39%的甲基橙降解率。材料性能稳定,可重复使用,在降解有机污染物方面具有良好的应用前景。
中图分类号:
陈思, 胡腾飞, 于永波, 王冰鑫, 洪俊明, 张倩. 硫掺杂石墨烯电催化降解有机染料甲基橙[J]. 化工进展, 2021, 40(1): 550-558.
Si CHEN, Tengfei HU, Yongbo YU, Bingxin WANG, Junming HONG, Qian ZHANG. Electrocatalytic degradation of organic dye methyl orange by sulfur-doped graphene[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 550-558.
材料 | C/% | S/% | O/% |
---|---|---|---|
GO | 45.8 | — | 46.5 |
RGN | 65.2 | — | 27.9 |
SGN | 55.8 | 11.2 | 28.6 |
表1 不同材料中碳、氧、硫元素的测定结果(原子分数)
材料 | C/% | S/% | O/% |
---|---|---|---|
GO | 45.8 | — | 46.5 |
RGN | 65.2 | — | 27.9 |
SGN | 55.8 | 11.2 | 28.6 |
1 | 孙大鹏. 电催化氧化处理染料工业废水的研究现状与发展前景浅析[J]. 绿色科技, 2015(4): 188-190. |
SUN Dapeng. Research status and development prospect of electrocatalytic oxidation treatment of dyestuff wastewater[J]. Journal of Green Science and Technology, 2015(4): 188-190. | |
2 | 丁绍兰, 李郑坤, 王睿. 染料废水处理技术综述[J]. 水资源保护, 2010, 26(3): 73-78. |
DING Shaolan, LI Zhengkun, WANG Rui. Summary of treatment of dyestuff wastewater[J]. Water Resources Protection, 2010, 26(3): 73-78. | |
3 | 麻晓越, 孙治荣. 电催化技术在有机化工废水处理中的研究进展[J]. 现代化工, 2018, 38(3): 42-46. |
MA Xiaoyue, SUN Zhirong. Progress of electrocatalytic technology in treating organic chemical wastewater[J]. Modern Chemical Industry, 2018, 38(3): 42-46. | |
4 | 赵媛媛, 王德军, 赵朝成. 电催化氧化处理难降解废水用电极材料的研究进展[J]. 材料导报, 2019, 33(7): 1125-1132. |
ZHAO Yuanyuan, WANG Dejun, ZHAO Chaocheng. Progress in electrode materials treatment by electro-catalytic for refractory wastewater oxidation[J]. Materials Reports, 2019, 33(7): 1125-1132. | |
5 | 孟雅雯. 掺杂石墨烯电极材料的制备及其电化学性能研究[D]. 兰州: 兰州理工大学, 2019. |
MENG Yawen. Synthesis and electrochemical performance of graphene and doped graphene electrode materials[D]. Lanzhou: Lanzhou University of Technology, 2019. | |
6 | 杨文耀, 张海洋, 朱如志, 等. pH值对硫掺三维石墨烯电化学性能影响的探究[J]. 电子元件与材料, 2018, 37(10): 42-48. |
YANG Wenyao, ZHANG Haiyang, ZHU Ruzhi, et al. Effect of pH value on electrochemical properties of three-dimensional sulfur-doped graphene[J]. Electronic Components and Materials, 2018, 37(10): 42-48. | |
7 | DUAN Jingjing, CHEN Sheng, JARONIEC M, et al. Heteroatom-doped graphene-based materials for energy-relevant electrocatalytic processes[J]. ACS Catalysis, 2015, 5: 5207-5234. |
8 | FENG Leiyu, QIN Leiyu, HUANG Yujun, et al. Boron-, sulfur-, and phosphorus-doped graphene for environmental applications[J]. Science of the Total Environment, 2020, 698: 134239. |
9 | JEON In-Yup, ZHANG Sheng, ZHANG Lipeng, et al. Edge-selectively sulfurized graphene nanoplatelets as efficient metal-free electrocatalysts for oxygen reduction reaction: the electron spin effect[J]. Advanced Materials, 2013, 25(42): 6138-6145. |
10 | 周金浩. 掺杂石墨烯的可控制备及性能研究[D]. 成都: 电子科技大学, 2018. |
ZHOU Jinhao. Controllable synthesis and properties of heteroatom-doped graphene materials[D]. Chengdu: University of Electronic Science and Technology of China, 2018. | |
11 | GAO Hui, LIU Zheng, SONG Li, et al. Synthesis of S-doped graphene by liquid precursor[J]. Nanotechnology, 2012, 23(27): 275605. |
12 | 张欢欢. 氮/硫共掺杂石墨烯的制备及其氧还原催化性能研究[D]. 重庆: 西南大学, 2016. |
ZHANG Huanhuan. Synthesis of nitrogen/sulfur co-doped graphene for efficient ORR electrocatalysis[D]. Chongqing: Southwest University, 2016. | |
13 | YANG Zhi, YAO Zhen, LI Guifa, et al. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction[J]. ACS Nano, 2012, 6(1): 205-211. |
14 | 洪菲, 周立群, 黄莹, 等. 改进Hummers法化学合成石墨烯及其表征[J]. 化学与生物工程, 2012, 29(5): 31-33. |
HONG Fei, ZHOU Liquan, HUANG Ying, et al. Synthesis and characterization of graphene by improved hummers method[J]. Chemistry & Bioengineering, 2012, 29(5): 31-33. | |
15 | ZHANG Qian, WANG Bingxin, YU Yongbo, et al. Sulfur doped-graphene for enhanced acetaminophen degradation via electro-catalytic activation: efficiency and mechanism[J]. Science of the Total Environment, 2020, 715: 136710. |
16 | BEGUM H, AHMED M S, JEON Seungwon. δ-MnO2 nanoflowers on sulfonated graphene sheets for stable oxygen reduction and hydrogen evolution reaction[J]. Electrochimica Acta, 2019, 296: 235-242. |
17 | MORALES-ACOSTA D, FLORES-OVERVIDES J D, RODRIGUEZ-GONZALEZ J A, et al. Comparative methods for reduction and sulfonation of graphene oxide for fuel cell electrode applications[J]. International Journal of Hydrogen Energy, 2019, 44: 12356-12364. |
18 | ALI A, KHAN Z S, JAMIL M, et al. Simultaneous reduction and sulfonation of graphene oxide for efficient hole selectivity in polymer solar cells[J]. Current Applied Physics, 2018, 18: 599-610. |
19 | FERRARI A C. Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects[J]. Solid State Communications, 2007, 143(1/2): 47-57. |
20 | DRESSELHAUS M S, JORIO A, HOFMANN M, et al. Perspectives on carbon nanotubes and graphene Raman spectroscopy[J]. Nano Letters, 2010, 10(3): 751-758. |
21 | WEI Maoping, CHAI Hui, CAO Yali, et al. Sulfonated graphene oxide as an adsorbent for removal of Pb2+ and methylene blue[J]. Journal of Colloid and Interface Science, 2018, 524: 297-305. |
22 | KANNAN A G, ZHAO Jinxing, Sung Geun JO, et al. Nitrogen and sulfur co-doped graphene counter electrodes with synergistically enhanced performance for dye-sensitized solar cells[J]. Journal of Materials Chemistry A, 2014, 2: 12232-12239. |
23 | 廖佳珍. g-C3N4/TiO2复合光催化剂的制备及可见光催化性能的研究[D]. 重庆: 重庆工商大学, 2014. |
LIAO Jiazhen. Preparation of g-C3N4/TiO2 composite photocatalyst and study on its photocatalytic activity under visible light[D]. Chongqing: Chongqing Technology and Business University, 2014. | |
24 | ZHANG Zhibin, HUANG Jian, DONG Zhimin, et al. Ultralight sulfonated graphene aerogel for efficient adsorption of uranium from aqueous solutions[J]. Radioanalytical and Nuclear Chemistry, 2019, 321: 1045-1055. |
25 | LI Jiajie, ZHANG Yumin, ZHANG Xinghong, et al. S,N dual-doped graphene like carbon nanosheets as efficient oxygen reduction reaction electrocatalysts[J]. ASC Applied Materials & Interfaces, 2017, 9: 398-405. |
26 | LI Mingjie, LIU Chenming, ZHAO He, et al. Tuning sulfur doping in graphene for highly sensitive dopamine biosensors[J]. Carbon, 2015, 86: 197-206. |
27 | 周玉莲, 于永波, 黄湾, 等. 氧化石墨烯电催化高效降解有机染料RBk5[J]. 中国环境科学, 2019, 39(11): 4653-4659. |
ZHOU Yulian, YU Yongbo, HUANG Wan, et al. Electrocatalytic degradation of organic dye RBk5 by oxide graphene[J]. China Environmental Science, 2019, 39(11): 4653-4659. | |
28 | 王冰鑫, 于永波, 黄湾, 等. 硫掺杂石墨烯电催化降解偶氮染料RBK5[J]. 化工进展, 2019, 38(12): 5471-5477. |
WANG Bingxin, YU Yongbo, HUANG Wan, et al. Electrocatalytic degradation of azo dye RBK5 by sulfur-doped graphene[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5471-5477. | |
29 | 黄湾. 硫、氮掺杂石墨烯电极电催化降解扑热息痛的研究[D]. 厦门: 华侨大学, 2019. |
HUANG Wan. Electrocatalytic degradation of acetaminophen by sulfur and nitrogen doped graphene electrodes[D]. Xiamen: Huaqiao University, 2019. | |
30 | 郑志功, 张志刚, 陈杨青, 等. Co-La改性Ti基板阳极电催化降解废水甲基橙[J]. 福建工程学院学报, 2019, 17(1): 23-28. |
ZHENG Zhigong, ZHANG Zhigang, CHEN Yangqing, et al. Electrocatalytic degradation of methyl orange in wastewater by Co-La/Ti electrode[J]. Journal of Fujian University of Technology, 2019, 17(1): 23-28. | |
31 | 刘咏, 邹文慧, 廖洋, 等. Ce3+电催化降解甲基橙模拟废水的研究[J]. 中国稀土学报, 2010, 29(1): 105-111. |
LIU Yong, ZOU Wenhui, LIAO Yang, et al. Treatment on methyl orange containing simulation wastewater by Ce3+ ion homogenous electro-catalytic degradation process[J]. Journal of the Chinese Rare Earth Society, 2010, 29(1): 105-111. | |
32 | 陈汉林, 敖日其冷, 陈梓烽, 等. 利用碳氮共掺杂的二氧化钛纳米管阵列实现同时降解甲基橙和产氢[J]. 环境科学学报, 2015, 35(9): 2790-2797. |
CHEN Hanlin, Aoriqileng, CHEN Zifeng, et al. Concurrent photoelectrochemical reduction of H2O and oxidation of methyl orange (MO) using carbon and nitrogen codoped TiO2 nanotube arrays (C,N-TNAs)[J]. Acta Scientiae Circumstantiae, 2015, 35(9): 2790-2797. | |
33 | WU Dongling, WANG Tao, WANG Luxiang, et al. Hydrothermal synthesis of nitrogen, sulfur co-doped graphene and its high performance in supercapacitor and oxygen reduction reaction[J]. Microporous and Mesoporous Materials, 2019, 7: 109556. |
34 | ZHANG Qian, HUANG Wan, HONG Junming, et al. Deciphering acetaminophen electrical catalytic degradation using single-form S doped graphene/Pt/TiO2[J]. Chemical Engineering Journal, 2018, 343: 662-675. |
35 | DENIS P A, FACCIO R, MOMBRU A W. Is it possible to dope single-walled carbon nanotubes and graphene with sulfur?[J]. ChemPhysChem, 2009, 10(4): 715-722. |
36 | 马新龙. 掺杂多孔碳材料的制备及其电化学性能研究[D]. 北京: 中国石油大学, 2016. |
MA Xinlong. The synthesis of heteroatom-doped porous carbon materials and its application in the aspect of electrochemical performance[D]. Beijing: China University of Petroleum, 2016. | |
37 | ZHANG Lipeng, NIU Jianbing, LI Mingtao, et al. Catalytic mechanisms of sulfur-doped graphene as efficient oxygen reduction reaction catalysts for fuel cells[J]. The Journal of Physical Chemistry C, 2014. 118(7): 3545-3553. |
38 | 张惠灵, 徐亮, 农佳莹, 等. Ti/MnO2/PbO2电极的制备及电催化降解罗丹明B[J]. 化工环保, 2008, 28(4): 300-303. |
ZHANG Huiling, XU Liang, NONG Jiaying, et al. Preparation of Ti/MnO2/PbO2 electrode and its use in electrocatalytic oxidation degradation of Rhodamine B[J]. Environmental Protection of Chemical Industry, 2008, 28(4): 300-303. | |
39 | 王苏. 电催化氧化法处理阳离子染料废水试验研究[D]. 广东: 广东工业大学, 2012. |
WANG Su. Experimental study on treating the cationic dye wastewater by electro-catalytic oxidation[D]. Guangdong: Guangdong University of Technology, 2012. | |
40 | 李春辉, 董永春. 氢氧自由基体系中偶氮染料氧化降解反应历程的探究[J]. 染料与染色, 2010, 47(5): 51-54. |
LI Chunhui, DONG Yongchun. A study on mechanism of oxidative degradation of azo dyes caused by the hydroxyl radical[J]. Dyestuffs and Coloration, 2010, 47(5): 51-54. | |
41 | 李海英, 石宝龙, 柳荣展. 染料废水内电解效率与染料结构的关系[J]. 青岛大学学报, 1999, 14(1): 21-25. |
LI Haiying, SHI Baolong, LIU Rongzhan. Relationship between the decoloration of the wastewater containing dye by internal electrolysis and the dye chemical constitutions[J]. Journal of Qingdao University, 1999, 14(1): 21-25. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[6] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[7] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[8] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[9] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[10] | 葛全倩, 徐迈, 梁铣, 王凤武. MOFs材料在光电催化领域应用的研究进展[J]. 化工进展, 2023, 42(9): 4692-4705. |
[11] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[12] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[13] | 白志华, 张军. 二乙烯三胺五亚甲基膦酸/Fenton体系氧化脱除NO[J]. 化工进展, 2023, 42(9): 4967-4973. |
[14] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[15] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |