1 | LOHSE S E, ABADEER N, ZOLOTY M, et al. Nanomaterial probes in the environment: gold nanoparticle soil retention and environmental stability as a function of surface chemistry [J]. ACS Sustainable Chemistry Engineering, 2017, 5(12): 11451-11458. | 2 | RICHTER M M. Electrochemiluminescence (ECL) [J]. Chemical Reviews, 2004, 104(6): 3003-3036. | 3 | SILVA P B D, DE FREITAS E S, BERNEGOSSI J, et al. Nanotechnology-based drug delivery systems for treatment of tuberculosis: a review [J]. Journal of Biomedical Nanotechnology, 2016, 12(2): 241-260. | 4 | XU C, KONG D, SONG S, et al. Gold nanoparticle-based semi-quantitative and quantitative ultrasensitive paper sensor for the detection of twenty mycotoxins [J]. Nanoscale, 2016, 8(9): 5245-5253. | 5 | ZHANG Y, SHEN Y, YANG X, et al. Gold catalysts supported on the mesoporous nanoparticles composited of zirconia and silicate for oxidation of formaldehyde [J]. Journal of Molecular Catalysis A:Chemical, 2010, 316(1/2): 100-105. | 6 | 洪诗斌, 刘梦艳, 张薇, 等. 环糊精及其衍生物催化的有机反应 [J]. 有机化学, 2015, 35(2): 325-336. | 6 | HONG S B, LIU M Y, ZHANG W, et al. Organic reactions catalyzed by cyclodextrin and its derivatives [J]. Organic Chemistry, 2015, 35(2): 325-336. | 7 | 吴海韬, 徐小涵, 王月月, 等. 肝素化金纳米粒子的制备及其对人抗凝血酶Ⅲ的检测[J]. 材料科学与工程学报, 2015, 6: 89-94. | 7 | WU H T, XU X H, WANG Y Y, et al. Preparation of heparin-modified gold nanoparticles for human antithrombin Ⅲ detection [J]. Journal of Materials Science and Engineering, 2015, 6: 89-94. | 8 | SYLVESTRE J P, KABASHIN A V, SACHER E, et al. Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins [J]. Journal of the American Chemical Society, 2004, 126(23): 7176-7177. | 9 | XU J, YIN J S, MA E. Nanocrystalline Ag formed by low-temperature high-energy mechanical attrition [J]. Nanostructured Materials, 1997, 8(1): 91-100. | 10 | ZHONG L, XI Z, BAO S, et al. Rational design and SERS properties of side-by-side, end-to-end and end-to-side assemblies of Au nanorods [J]. Journal of Materials Chemistry, 2011, 21(38): 14448-14455. | 11 | 田茂杰, 向小芳. 合成不同粒径大小的金纳米粒子的分析研究 [J]. 浙江化工, 2018, 49(3): 32-34. | 11 | TIAN M J, XIANG X F. Analysis and study on the synthesis of gold nanoparticles with different particle sizes [J]. Zhejiang Chemical Industry, 2018, 49(3): 32-34. | 12 | 戚文秀. 基于微生物的纳米材料制备及其应用研究[D]. 南京: 东南大学, 2016. | 12 | QI W X. The study on preparation and application of nano materials based on microorganism[D]. Nanjing: Southeast University, 2016. | 13 | 陶晶, 付争伟, 董春法, 等. 芦荟叶提取物绿色制备单分散纳米金及其性能[J]. 稀有金属材料与工程, 2019, 48(11): 3470-3475. | 13 | TAO J, FU Z W, DONG C F, et al. Green synthesis and characterization of monodisperse gold nanoparticles using aloe vera leaf extract [J]. Rare Metal Materials and Engineering, 2019, 48(11): 3470-3475. | 14 | RAJASREE S R R, SUMAN T. Extracellular biosynthesis of gold nanoparticles using a gram negative bacterium Pseudomonas fluorescens [J]. Asian Pacific Journal of Tropical Disease, 2012, 2(S2):S796-S799. | 15 | 付云芝, 张永强. 生物合成纳米晶的研究进展 [J]. 中国材料进展, 2011, 3: 52-58. | 15 | FU Y Z, ZHANG Y Q. Research progress on biosynthesis of nano-crystal [J]. Materials China, 2011, 3: 52-58. | 16 | GUPTA R, SHARMA R, BEG Q K. Revisiting microbial keratinases: next generation proteases for sustainable biotechnology [J]. Critical Reviews in Biotechnology, 2013, 33(2): 216-228. | 17 | 蒋彪, 王常高, 杜馨, 等. 产角蛋白酶菌株的筛选及发酵条件优化 [J]. 食品工业科技, 2017, 38(12): 182-185. | 17 | JIANG B, WANG C G, DU X, et al. Screening of production keratinase strains and optimization of fermentation conditions [J]. Science and Technology of Food Industry, 2017, 38(12): 182-185. | 18 | TAO L Y, GONG J S, SU C, et al. Mining and expression of a metagenome-derived keratinase responsible for biosynthesis of silver nanoparticles [J]. ACS Biomaterials Science Engineering, 2018, 4 (4):1307-1315. | 19 | 李艳. 金、银纳米粒子的合成以及表面光谱特征和应用 [D]. 苏州: 苏州大学, 2013. | 19 | LI Y. The Characteristics and applications of functionalized molecules surface spectrum on metal nanoparticles [D]. Suzhou: Soochow University, 2013. | 20 | CAO Z J, ZHANG Q, WEI D K, et al. Characterization of a novel Stenotrophomonasisolate with high keratinase activity and purification of the enzyme [J]. Journal of Industrial Microbiology & Biotechnology, 2009, 36(2): 181-188. | 21 | 火灿. 生物合成纳米材料的制备、表征及环境行为研究 [D]. 北京: 华北电力大学, 2019. | 21 | HUO C. Biosynthesis, characterization and environmental behavior of nanoparticles [D]. Beijing: North China Electric Power University, 2019. | 22 | LATEEF A, ADELERE I A, GUEGUIM-KANA E B, et al. Green synthesis of silver nanoparticles using keratinase obtained from a strain of Bacillus safensis LAU 13 [J]. International Nano Letters, 2015, 5(1): 29-35. | 23 | JANG E Y, SON Y J, PARK S Y, et al. Improved biosynthesis of silver nanoparticles using keratinase from Stenotrophomonas maltophilia R13: reaction optimization, structural characterization, and biomedical activity [J]. Bioprocess and Biosystems Engineering, 2018, 41(3): 381-393. | 24 | SHARMA B, MANDANI S, SARMA T K J S R. Biogenic growth of alloys and core-shell nanostructures using urease as a nanoreactor at ambient conditions [J]. Scientific Reports, 2014,3(1):2601-2608. | 25 | RANGNEKAR A, SARMA T K, SINGH A K, et al. Retention of enzymatic activity of α-amylase in the reductive synthesis of gold nanoparticles [J]. Langmuir, 23(10): 5700-5706. | 26 | DURáN N C R, CORDI L, RUBILAR O, et al. Biogenic silver nanoparticles associated with silver chloride nanoparticles (Ag@AgCl) produced by laccase from Trametes versicolor [J]. SpringerPlus, 2014,3(1): 645-651. | 27 | 王瑞斌, 郭新秋, 李慧琴, 等. 阳离子聚合物/质粒DNA形成的纳米复合体粒径测量 [J]. 实验室研究与探索, 2012, 10: 247-249. | 27 | WANG R B, GUO X Q, LI H Q, et al. Particle size measurement of cationic polymer /plasmid DNA nanocomposites [J]. Research and Exploration in Laboratory, 2012, 10: 247-249. | 28 | CHAN Y S, MAT DON M. Biosynthesis and structural characterization of Ag nanoparticles from white rot fungi [J]. Materials Science Engineering C, 2013, 33(1): 282-288. |
|