1 | 肖文海,周嗣杰,王颖,等. 如何工程化生物学[J]. 化工进展, 2016, 35(6): 1827-1836. | 1 | XIAO W H, ZHOU S J, WANG Y, et al. How to make biology more “engineering”[J]. Chemical Industry and Engineering Progress, 2016, 35(6): 1827-1836. | 2 | DUNN M F, NIKS D, NGO H, et al. Tryptophan synthase: the workings of a channeling nanomachine[J]. Trends in Biochemical Sciences, 2008, 33(6): 254-264. | 3 | BEHRENDORFF J, BORRAS-GAS G, PRIBIL M. Synthetic protein scaffolding at biological membranes[J]. Trends in Biotechnology, 2020, 38(4): 432-446. | 4 | 刘晓楠, 李刚, 何敏, 等. 生物材料与组织工程支架研究进展[J]. 工程塑料应用, 2018, 46(7): 133-137. | 4 | LIU X N, LI G, HE M, et al. Progress in research of biomaterials and tissue engineering scaffolds[J]. Engineering Plastic Application,2018, 46(7): 133-137. | 5 | DUEBER J E, WU G C, MALMIRCHEGINI G R, et al. Synthetic protein scaffolds provide modular control over metabolic flux[J]. Nature Biotechnology, 2009, 27(8): 753-759. | 6 | MOON T S, DUEBER J E, SHIUE E, et al. Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli[J]. Metabolic Engineering, 2010, 12(3): 298-305. | 7 | HORN A H, STICHT H. Synthetic protein scaffolds based on peptide motifs and cognate adaptor domains for improving metabolic productivity[J]. Front Bioeng. Biotechnol., 2015, 3: 191. | 8 | AGAPAKIS C M, DUCAT D C, BOYLE P M, et al. Insulation of a synthetic hydrogen metabolism circuit in bacteria[J]. Journal of Biological Engineering, 2010, 4:3. | 9 | WANG Y C, YU O. Synthetic scaffolds increased resveratrol biosynthesis in engineered yeast cells[J]. Journal of Biotechnology, 2012, 157(1): 258-260. | 10 | BAEK J M, MAZUMDAR S, LEE S W, et al. Butyrate production in engineered E. coli with synthetic scaffolds[J]. Biotechnology and Bioengineering, 2013, 110(10): 2790-2794. | 11 | PHAM V D, LEE S H, PARK S J, et al. Production of gamma-aminobutyric acid from glucose by introduction of synthetic scaffolds between isocitrate dehydrogenase, glutamate synthase and glutamate decarboxylase in recombinant E. coli[J]. Journal of Biotechnology, 2015, 207: 52-57. | 12 | TRAN K N T, SOMASUNDARAM S, EOM G T, et al. Efficient itaconic acid production via protein-protein scaffold introduction between glta, acna, and cada in recombinant E. coli[J]. Biotechnology Progress, 2019, 35(3): e2799. | 13 | GAO X, YANG S, ZHAO C, et al. Artificial multienzyme supramolecular device: highly ordered self-assembly of oligomeric enzymes in vitro and in vivo[J]. Angewandte Chemie: International Edition in English, 2014, 53(51): 14027-14030. | 14 | KANG W, MA T, LIU M, et al. Modular enzyme assembly for enhanced cascade biocatalysis and metabolic flux[J]. Nature Communication, 2019, 10(1): 4248. | 15 | LOFBLOM J, FELDWISCH J, TOLMACHEV V, et al. Affibody molecules: engineered proteins for therapeutic, diagnostic and biotechnological applications[J]. FEBS Letters, 2010, 584(12): 2670-2680. | 16 | NYGREN P A. Alternative binding proteins: affibody binding proteins developed from a small three-helix bundle scaffold[J]. FEBS Journal, 2008, 275(11): 2668-2676. | 17 | TIPPMANN S, ANFELT J, DAVID F, et al. Affibody scaffolds improve sesquiterpene production in Saccharomyces cerevisiae[J]. ACS Synthetic Biology, 2017, 6(1): 19-28. | 18 | WIECZOREK A S, MARTIN V J J. Engineering the cell surface display of cohesins for assembly of cellulosome-inspired enzyme complexes on Lactococcus lactis[J]. Microbial Cell Factories, 2010, 9: 69. | 19 | LIU F, BANTA S, CHEN W. Functional assembly of a multi-enzyme methanol oxidation cascade on a surface-displayed trifunctional scaffold for enhanced nadh production[J]. Chemical Communications (Cambridge, England), 2013, 49(36): 3766-3768. | 20 | LI T, CHEN X, CAI Y, et al. Artificial protein scaffold system (apross): an efficient method to optimize exogenous metabolic pathways in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2018, 49: 13-20. | 21 | BARNABA C, RAMAMOORTHY A. Picturing the membrane-assisted choreography of cytochrome p450 with lipid nanodiscs[J]. Chemphyschem, 2018, 19(20): 2603-2613. | 22 | YANG Y L, ZHANG Y T, ZHANG S S, et al. Identification and characterization of a membrane-bound sesterterpene cyclase from streptomyces somaliensis[J]. Journal of Natural Products, 2018, 81(4): 1089-1092. | 23 | TAN M C, CUI X Q, HE X Q, et al. Late-stage terpene cyclization by an integral membrane cyclase in the biosynthesis of isoprenoid epoxycyclohexenone natural products[J]. Organic Letters, 2017, 19(19): 5376-5379. | 24 | MYHRVOLD C, POLKA J K, SILVER P A. Synthetic lipid-containing scaffolds enhance production by colocalizing enzymes[J]. ACS Synthetic Biology, 2016, 5(12): 1396-1403. | 25 | LIN J L, ZHU J, WHEELDON I. Synthetic protein scaffolds for biosynthetic pathway colocalization on lipid droplet membranes[J]. ACS Synthetic Biology, 2017, 6(8): 1534-1544. | 26 | VARGO K B, PARTHASARATHY R, HAMMER D A. Self-assembly of tunable protein suprastructures from recombinant oleosin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(29): 11657-11662. | 27 | GOU M. The scaffold proteins of lignin biosynthetic cytochrome p450 enzymes[J]. Natural Plants, 2018, 4(5): 299-310. | 28 | PATEL R, SMITH S M, ROBINSON C. Protein transport by the bacterial tat pathway[J]. Biochimica et Biophysica Acta, 2014, 1843(8): 1620-1628. | 29 | HENRIQUES DE JESUS M P R, ZYGADLO NIELSEN A, BUSCK MELLOR S, et al. Tat proteins as novel thylakoid membrane anchors organize a biosynthetic pathway in chloroplasts and increase product yield 5-fold[J]. Metabolic Engineering, 2017, 44: 108-116. | 30 | SOMASUNDARAM S, TRAN K N T, RAVIKUMAR S, et al. Introduction of synthetic protein complex between pyrococcus horikoshii glutamate decarboxylase and E. coli gaba transporter for the improved production of gaba[J]. Biochemical Engineering Journal, 2017, 120: 1-6. | 31 | THOMIK T, WITTIG I, CHOE J Y, et al. An artificial transport metabolon facilitates improved substrate utilization in yeast[J]. Nature Chemical Biology, 2017, 13(11): 1158-1163. | 32 | AVALOS J L, FINK G R, STEPHANOPOULOS G. Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols[J]. Nature Biotechnology, 2013, 31(4): 335-341. | 33 | FARHI M, MARHEVKA E, MASCI T, et al. Harnessing yeast subcellular compartments for the production of plant terpenoids[J]. Metabolic Engineering, 2011, 13(5): 474-481. | 34 | LIU G S, LI T, ZHOU W, et al. The yeast peroxisome: a dynamic storage depot and subcellular factory for squalene overproduction[J]. Metabolic Engineering, 2019, 57: 151-161. | 35 | YEATES T O, CROWLEY C S, TANAKA S. Bacterial microcompartment organelles: protein shell structure and evolution[J]. Annual Review of Biophysics, 2010, 39: 185-205. | 36 | SHIVELY J M, BALL F L, KLINE B W. Electron microscopy of the carboxysomes (polyhedral bodies) of thiobacillus neapolitanus[J]. Journal of Bacteriology, 1973, 116(3): 1405-1411. | 37 | YEATES T O, KERFELD C A, HEINHORST S, et al. Protein-based organelles in bacteria: carboxysomes and related microcompartments[J]. Nature Reviews Microbiology, 2008, 6(9): 681-691. | 38 | BONACCI W, TENG P K, AFONSO B, et al. Modularity of a carbon-fixing protein organelle[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(2): 478-483. | 39 | PARSONS J B, FRANK S, BHELLA D, et al. Synthesis of empty bacterial microcompartments, directed organelle protein incorporation, and evidence of filament-associated organelle movement[J]. Molecular Cell, 2010, 38(2): 305-315. | 40 | PANG A, FRANK S, BROWN I, et al. Structural insights into higher order assembly and function of the bacterial microcompartment protein pdua[J]. Journal of Biological Chemistry, 2014, 289(32): 22377-22384. | 41 | LEE M J, MANTELL J, HODGSON L, et al. Engineered synthetic scaffolds for organizing proteins within the bacterial cytoplasm[J]. Nature Chemical Biology, 2018, 14(2): 142-147. | 42 | ROTH J F. The yeast Ty virus-like particles[J]. Yeast, 2000, 16(9): 785-795. | 43 | HAN J Y, SONG J M, SEO S H, et al. Ty1-fused protein-body formation for spatial organization of metabolic pathways in Saccharomyces cerevisiae[J]. Biotechnology and Bioengineering, 2018, 115(3): 694-704. | 44 | PATTERSON D P, SCHWARZ B, WATERS R S, et al. Encapsulation of an enzyme cascade within the bacteriophage p22 virus-like particle[J]. ACS Chemical Biology, 2014, 9(2): 359-365. | 45 | RHEE J K, HOVLID M, FIEDLER J D, et al. Colorful virus-like particles: fluorescent protein packaging by the qbeta capsid[J]. Biomacromolecules, 2011, 12(11): 3977-3981. | 46 | PINHEIRO A V, HAN D R, SHIH W M, et al. Challenges and opportunities for structural DNA nanotechnology[J]. Nature Nanotechnology, 2011, 6(12): 763-772. | 47 | DELEBECQUE C J, LINDNER A B, SILVER P A, et al. Organization of intracellular reactions with rationally designed RNA assemblies[J]. Science, 2011, 333(6041): 470-474. | 48 | WILNER O I, SHIMRON S, WEIZMANN Y, et al. Self-assembly of enzymes on DNA scaffolds: En route to biocatalytic cascades and the synthesis of metallic nanowires[J]. Nano Letters, 2009, 9(5): 2040-2043. | 49 | CHEN R, CHEN Q, KIM H, et al. Biomolecular scaffolds for enhanced signaling and catalytic efficiency[J]. Current Opinion in Biotechnology, 2014, 28: 59-68. | 50 | WILNER O I, WEIZMANN Y, GILL R, et al. Enzyme cascades activated on topologically programmed DNA scaffolds[J]. Nat. Nanotechnol., 2009, 4(4): 249-254. | 51 | NEGI S, IMANISHI M, MATSUMOTO M, et al. New redesigned zinc-finger proteins: design strategy and its application[J]. Chemistry, 2008, 14(11): 3236-3249. | 52 | CONRADO R J, WU G C, BOOCK J T, et al. DNA-guided assembly of biosynthetic pathways promotes improved catalytic efficiency[J]. Nucleic Acids Research, 2012, 40(4): 1879-1889. | 53 | LEE J H, JUNG S C, BUI L M, et al. Improved production of l-threonine in E. coli by use of a DNA scaffold system[J]. Applied and Environmental Microbiology, 2013, 79(3): 774-782. | 54 | SUN Q, CHEN W. Halotag mediated artificial cellulosome assembly on a rolling circle amplification DNA template for efficient cellulose hydrolysis[J]. Chemical Communications (Cambridge, England), 2016, 52(40): 6701-6704. | 55 | CHEN Q, YU S, MYUNG N, et al. DNA-guided assembly of a five-component enzyme cascade for enhanced conversion of cellulose to gluconic acid and H2O2[J]. Journal of Biotechnology, 2017, 263: 30-35. | 56 | SWEETLOVE L J, FERNIE A R. The role of dynamic enzyme assemblies and substrate channelling in metabolic regulation[J]. Nature Communication, 2018, 9(1): 2136. | 57 | BAULER P, HUBER G, LEYH T, et al. Channeling by proximity: the catalytic advantages of active site colocalization using brownian dynamics[J]. Journal of Physical Chemistry Letters, 2010, 1(9): 1332-1335. | 58 | LEE H, DELOACHE W C, DUEBER J E. Spatial organization of enzymes for metabolic engineering[J]. Metabolic Engineering, 2012, 14(3): 242-251. | 59 | ZACCOLO M, POZZAN T. Discrete microdomains with high concentration of camp in stimulated rat neonatal cardiac myocytes[J]. Science, 2002, 295(5560): 1711-1715. | 60 | TOKUHIRO K, MURAMATSU M, OHTO C, et al. Overproduction of geranylgeraniol by metabolically engineered Saccharomyces cerevisiae[J]. Applied and Environmental Microbiology, 2009, 75(17): 5536-5543. | 61 | FAN Z, WAGSCHAL K, CHEN W, et al. Multimeric hemicellulases facilitate biomass conversion[J]. Applied and Environmental Microbiology, 2009, 75(6): 1754-1757. | 62 | PING Y, LI X D, YOU W J, et al. De novo production of the plant-derived tropine and pseudotropine in yeast[J]. ACS Synthetic Biology, 2019, 8(6): 1257-1262. | 63 | JENNEWEIN S, WILDUNG M R, CHAU M, et al. Random sequencing of an induced taxus cell cdna library for identification of clones involved in taxol biosynthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(24): 9149-9154. | 64 | CAPUTI L, FRANKE J, FARROW S C, et al. Missing enzymes in the biosynthesis of the anticancer drug vinblastine in madagascar periwinkle[J]. Science, 2018, 360(6394): 1235-1239. | 65 | O’NEIL A, REICHHARDT C, JOHNSON B, et al. Genetically programmed in vivo packaging of protein Cargo and its controlled release from bacteriophage p22[J]. Angewandte Chemie, International Edition in English, 2011, 50(32): 7425-7428. | 66 | YOSHIDA S, HIRAGA K, TAKEHANA T, et al. A bacterium that degrades and assimilates poly(ethylene terephthalate)[J]. Science, 2016, 351(6278): 1196-1199. | 67 | AUSTIN H P, ALLEN M D, DONOHOE B S, et al. Characterization and engineering of a plastic-degrading aromatic polyesterase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(19): 4350-4357. | 68 | 李招, 王淑珍. 支架蛋白及其功能研究进展[J]. 生命的化学, 2019, 39(5): 979-986. | 68 | LI Z, WANG S Z. Recent advances of scaffold proteins and their functions[J]. Chemistry of Life, 2019, 39(5): 979-986. | 69 | BULUTOGLU B, HAGHPANAH J, CAMPBELL E, et al. Engineered biomolecular recognition of rdx by using a thermostable alcohol dehydrogenase as a protein scaffold[J]. ChemBioChem, 2018, 19(3): 247-255. |
|