1 | SILVA T L DA, REIS A, MEDEIROS R, et al. Oil production towards biofuel from autotrophic microalgae semicontinuous cultivations monitorized by flow cytometry[J]. Applied Biochemistry and Biotechnology, 2009, 159(2): 568-578. | 2 | KURAMOCHI T, RAMíREZ A, TURKENBURG W, et al. Comparative assessment of CO2 capture technologies for carbon-intensive industrial processes[J]. Progress in Energy and Combustion Science, 2012, 38(1): 87-112. | 3 | BHOLA V, BHOLA V, SWALAHA F, et al. Overview of the potential of microalgae for CO2 sequestration[J]. International Journal of Environmental Science and Technology, 2014, 11(7): 2103-2118. | 4 | YEN H, HU I C, CHEN C, et al. Microalgae-based biorefinery-from biofuels to natural products[J]. Bioresource Technology, 2013, 135: 166-174. | 5 | 姜加伟, 程丽华, 徐新华, 等. 微藻固定转化烟气CO2强化技术[J]. 化工进展, 2014, 33(7): 1884-1894. | 5 | JIANG J W, CHENG L H, XU X H, et al. Intensified technology for microalgal CO2 fixation and conversion from flue gas[J]. Chemical Industry and Engineering Progress, 2014, 33(7): 1884-1894. | 6 | 杨静, 蒋剑春, 张宁, 等. 利用工农业废弃物培养微藻的研究进展[J]. 化工进展, 2010, 29(S2): 282-287. | 6 | YANG J, JIANG J C, ZHANG N, et al. Cultivation on microalgae utilizing Industrial and agricultural wastes[J]. Chemical Industry and Engineering Progress, 2010, 29(S2): 282-287. | 7 | WODZINSKI R S, LABEDA D P, ALEXANDER M. Effects of low concentrations bisulfite-sulfite and nitrite on microorganism[J]. Applied and Environmental Microbiology, 1978, 35(4): 718-723. | 8 | VUPPALADADIYAM A K, YAO J G, FLORIN N, et al. Impact of flue gas compounds on microalgae and mechanisms for carbon assimilation and utilization[J]. Chemsuschem, 2018, 11(2): 334-355. | 9 | DE MORAIS M G, COSTA J A V. Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide[J]. Energy Conversion and Management, 2007, 48(7): 2169-2173. | 10 | LARA-GIL J A, ALVAREZ M M, PACHECO A. Toxicity of flue gas components from cement plants in microalgae CO2 mitigation systems[J]. Journal of Applied Phycology, 2014, 26(1): 357-368. | 11 | 赵安中. 新技术: 用二氧化碳养海藻来制取生物燃料[J]. 功能材料信息, 2007, 4(2): 64. | 11 | ZHAO A Z. New technology: growing seaweed using carbon dioxide to make biofuels[J]. Functional Materials Information, 2007, 4(2): 64. | 12 | BILANOVIC D, HOLLAND M, ARMON R. Microalgal CO2 sequestering——Modeling microalgae production costs[J]. Energy Conversion and Management, 2012, 58: 104-109. | 13 | LEE J, LEE J, SHIN C, et al. Methods to enhance tolerances of Chlorella KR-1 to toxic compounds in flue gas[J]. Applied Biochemistry and Biotechnology, 2000, 84/85/86(1-9): 329-342. | 14 | CHENG D, LI X, YUAN Y, et al. Adaptive evolution and carbon dioxide fixation of Chlorella sp. in simulated flue gas[J]. Science of the Total Environment, 2019, 650(2): 2931-2938. | 15 | LI X, XU J, GUO Y, et al. Effects of simulated flue gas on components of Scenedesmus raciborskii WZKMT[J]. Bioresource Technology, 2015, 190: 339-344. | 16 | 杜奎. 利用烟道气培养能源微藻小球藻和栅藻的研究[D]. 北京: 中国科学院大学, 2016. | 16 | DU K. Studies on cultivation of energy microalgae Chlorella and Scenedesmus with flue gas[D]. Beijing: University of Chinese Academy of Sciences, 2016. | 17 | XIE K, LI W, ZHAO W. Coal chemical industry and its sustainable development in China[J]. Energy, 2010, 35(SI): 4349-4355. | 18 | ZHANG Y, YUAN Z, MARGNI M, et al. Intensive carbon dioxide emission of coal chemical industry in China[J]. Applied Energy, 2019, 236: 540-550. | 19 | ZHOU W, ZHU B, LI Q, et al. CO2 emissions and mitigation potential in China’s ammonia industry[J]. Energy Policy, 2010, 38(7): 3701-3709. | 20 | 胡志伟, 刘涛, 满杰, 等. 煤化工行业主要环境污染物来源及污染防治对策[J]. 山东化工, 2016, 45(24): 155-156. | 20 | HU Z W, LIU T, MAN J, et al. The major source of environmental pollutants and countermeasure on control pollution in coal chemical industry[J]. Shangdong Chemical Industry, 2016, 45(24): 155-156. | 21 | 张金亮, 吴晓燕, 夏同伟, 等. 大型煤化工过程污染物产生与防治概述[J]. 广州化工, 2013, 41(13): 175-177. | 21 | ZHANG J L, WU X Y, XIA T W, et al. Pollution from coal chemical industry and its prevention and treatment[J]. Guangzhou Chemical Industry, 2013, 41(13): 175-177. | 22 | 郭丽萍. 关于煤焦化过程中颗粒物和二氧化硫释放的分析[J]. 化工管理, 2013 (24): 122. | 22 | GUO L P. Analysis of particulate matter and sulphur dioxide release during coal coking[J]. Chemical Enterprise Management, 2013 (24): 122. | 23 | 张朋朋. 煤化工大气污染处理技术进展及发展方向[J]. 煤化工, 2019, 47(1): 14-18. | 23 | ZHANG P P. Progress and development direction of air pollution treatment in coal chemical industry[J]. Coal Chemical Industry, 2019, 47(1): 14-18. | 24 | 王宏洋, 赵淑霞, 李敏, 等. 国内外煤化工行业污染物排放标准研究及启示[J]. 化工环保, 2018, 38(6): 720-727. | 24 | WANG H Y, ZHAO S X, LI M, et al. Study and enlightenment of pollutant discharge or emission standards for coal chemical industry at home and abroad[J]. Environmental Protection of Chemical Industry, 2018, 38(6): 720-727. | 25 | BLIGH E G, DYER W J. A rapid method of total lipid extraction and purification[J]. Canadian Journal of Biochemistry and Physiology, 1959, 37(8): 911-917. | 26 | ZHAO W, DUAN M, ZHANG X, et al. A mild extraction and separation procedure of polysaccharide, lipid, chlorophyll and protein from Chlorella spp.[J]. Renewable Energy, 2018, 118: 701-708. | 27 | MEIER L, STARA D, BARTACEK J, et al. Removal of H2S by a continuous microalgae-based photosynthetic biogas upgrading process[J]. Process Safety and Environmental Protection, 2018, 119: 65-68. | 28 | MERA R, TORRES E, ABALDE J. Effects of sodium sulfate on the freshwater microalga Chlamydomonas moewusii: implications for the optimization of algal culture media[J]. Journal of Phycology, 2016, 52(1): 75-88. | 29 | KUSTER E, DORUSCH F, ALTENBURGER R. Effects of hydrogen sulfide to Vibrio fischeri, Scenedesmus vacuolatus, and Daphnia magna[J]. Environmental Toxicology and Chemistry, 2005, 24(10): 2621-2629. | 30 | KUSHKEVYCH I, DORDEVIC D, VITEZOVA M. Toxicity of hydrogen sulfide toward sulfate-reducing bacteria Desulfovibrio piger Vib-7[J]. Archives of Microbiology, 2019, 201(3): 389-397. | 31 | MALHOTRA S S, HOCKING D. Biochemical and cytological effects of sulfur-dioxide on plant metabolism[J]. New Phytologist, 1976,76(2): 227-237. | 32 | STUMM W, MORGAN J J. Aquatic chemistry: an introduction emphasizing chemical equilibria in natural waters[J]. Ecological Modelling, 1981, 19(3): 227-230. | 33 | JIANG Y, ZHANG W, WANG J, et al. Utilization of simulated flue gas for cultivation of Scenedesmus dimorphus[J]. Bioresource Technology, 2013, 128: 359-364. | 34 | 黄婷婷. 亚硫酸钠促进莱茵衣藻生长与光合制氢的功能机理研究[D]. 上海: 上海师范大学, 2017. | 34 | HUANG T T. Study on functional mechanism of promoting the growth and enhancing H2 photoproduction in Chlamydomonas reinhardtii by sodium sulfite[D]. Shanghai: Shanghai Normal University, 2017. | 35 | 王倩雅. 不同硫素浓度下产油尖状栅藻的生长及生理生化特征[D]. 广州: 暨南大学, 2017. | 35 | WANG Q Y. Research on growth and physiological and biochemical characteristics of Scenedesmus acuminatus in different sulfur concentrations[D]. Guangzhou: Jinan University, 2017. | 36 | IVANOV I N, VíTOVá M, BI?OVá K. Growth and the cell cycle in green algae dividing by multiple fission[J]. Folia Microbiologica, 2019, 64(5): 663-672. | 37 | GOTO M, NAGAO N, YUSOFF F M, et al. High ammonia tolerance on growth rate of marine microalga Chlorella vulgaris[J]. Journal of Environmental Biology, 2018, 39(5): 843-848. | 38 | LI X, LI W, ZHAI J, et al. Effect of nitrogen limitation on biochemical composition and photosynthetic performance for fed-batch mixotrophic cultivation of microalga Spirulina platensis[J]. Bioresource Technology, 2018, 263: 555-561. | 39 | LI X, LI W, ZHAI J, et al. Effect of ammonium nitrogen on microalgal growth, biochemical composition and photosynthetic performance in mixotrophic cultivation[J]. Bioresource Technology, 2019, 273: 368-376. | 40 | DRATH M, KLOFT N, BATSCHAUER A, et al. Ammonia triggers photodamage of photosystem Ⅱ in the cyanobacterium Synechocystis sp. strain PCC 6803[J]. Plant Physiology, 2008, 147(1): 206-215. | 41 | MARKOU G, DEPRAETERE O, MUYLAERT K. Effect of ammonia on the photosynthetic activity of Arthrospira and Chlorella: a study on chlorophyll fluorescence and electron transport[J]. Algal Research-Biomass Biofuels and Bioproducts, 2016, 16: 449-457. | 42 | GUTIERREZ J, KWAN T A, ZIMMERMAN J B, et al. Ammonia inhibition in oleaginous microalgae[J]. Algal Research-Biomass Biofuels and Bioproducts, 2016, 19: 123-127. | 43 | VITOVA M, BISOVA K, KAWANO S, et al. Accumulation of energy reserves in algae: from cell cycles to biotechnological applications[J]. Biotechnology Advances, 2015, 33(6): 1204-1218. | 44 | LIANG F, WEN X, LUO L, et al. Physicochemical effects on sulfite transformation in a lipid-rich Chlorella sp. strain[J]. Chinese Journal of Oceanology and Limnology, 2014, 32(6): 1288-1296. | 45 | 罗柳茵, 李家泳, 陈卓, 等. 小球藻在水产动物饲料中的应用研究进展[J]. 粮食与饲料工业, 2016(6): 55-57. | 45 | LUO L Y, LI J Y, CHEN Z, et al. research progress in the application of aquatic animal feed of chlorella[J]. Cereal and Feed Industry, 2016(6): 55-57. |
|