1 | GROSJEAN C, MIRANDA P H, PERRIN M, et al. Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry[J]. Renewable & Sustainable Energy Reviews, 2012, 16(3): 1735-1744. | 2 | MATHEW M, KONG Q H, MCGRORY J, et al. Simulation of lithium ion battery replacement in a battery pack for application in electric vehicles[J]. Journal of Power Sources, 2017, 349(1): 94-104. | 3 | VIKSTR?M H, DAVIDSSON S, H??K M. Lithium availability and future production outlooks[J]. Applied Energy, 2013, 110: 252-266. | 4 | TSUCHIYA S, NAKATANI Y, IBRAHIM R, et al. Highly efficient separation of lithium chloride from seawater[J]. Journal of the American Chemical Society, 2002, 124(18): 4936-4937. | 5 | YANG S X, ZHANG F, DING H P, et al. Lithium metal extraction from seawater[J]. Joule, 2018, 2(9): 1648-1651. | 6 | 纪志永, 焦朋朋, 袁俊生, 等. 锂资源的开发利用现状与发展分析[J]. 轻金属, 2013(5): 1-5. | 6 | JI Z Y, JIAO P P, YUAN J S, et al. The exploitation and utilization of lithium resources and its development[J]. Light Metals, 2013 (5): 1-5. | 7 | SOMRANI A, HAMZAOUI A H, PONTIE M. Study on lithium separation from salt lake brines by nanofiltration (NF) and low pressure reverse osmosis (LPRO)[J]. Desalination, 2013, 317(15): 184-192. | 8 | GUO Z Y, JI Z Y, CHEN Q B, et al. Prefractionation of LiCl from concentrated seawater/salt lake brines by electrodialysis with monovalent selective ion exchange membranes[J]. Journal of Cleaner Production, 2018, 193: 338-350. | 9 | CHEN Q B, JI Z Y, LIU J, et al. Development of recovering lithium from brines by selective-electrodialysis: effect of coexisting cations on the migration of lithium[J]. Journal of Membrane Science, 2018, 548(15): 408-420. | 10 | JI Z Y, YANG F J, ZHAO Y Y, et al. Preparation of titanium-base lithium ionic sieve with sodium persulfate as eluent and its performance[J]. Chemical Engineering Journal, 2017, 328(15): 768-775. | 11 | XIAO G P, TONG K F, ZHOU L S, et al. Adsorption and desorption behavior of lithium ion in spherical PVC-MnO2 ion sieve[J]. Industrial & Engineering Chemistry Research, 2012, 51(33): 10921-10929. | 12 | GANDOMAN F H, JAGUEMONT J, GOUTAM S, et al. Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles: basics, progress, and challenges[J]. Applied Energy, 2019, 251(1): 113343. | 13 | MA S, JIANG M D, TAO P, et al. Temperature effect and thermal impact in lithium-ion batteries: a review[J]. Progress in Natural Science: Materials International, 2018, 28(6): 653-666. | 14 | FERGUS J W. Recent developments in cathode materials for lithium ion batteries[J]. Journal of Power Sources, 2010, 195(4): 939-954. | 15 | JI Z Y, ZHAO M Y, YUAN J S, et al. Li+ extraction from spinel-type LiMn2O4 in different eluents and Li+ insertion in the aqueous phase[J]. Solvent Extr. Ion Exch. , 2016, 34(6): 549-557. | 16 | JI Z Y, ZHAO M Y, ZHAO Y Y, et al. Lithium extraction process on spinel-type LiMn2O4 and characterization based on the hydrolysis of sodium persulfate[J]. Solid State Ionics, 2017, 301: 116-124. | 17 | ZHAO L L, WANG R S. Preparation of MnO2(Li) and its ion exchange kinetics[J]. Acta Physica-Chimica Sinica, 2003, 19(10): 933-937. | 18 | XU X, CHEN Y M, WAN P Y, et al. Extraction of lithium with functionalized lithium ion-sieves[J]. Progress in Materials Science, 2016, 84: 276-313. | 19 | OOI K, MIYAI Y, SAKAKIHARA J. Mechanism of Li+ insertion in spinel-type manganese oxide. Redox and ion-exchange reactions[J]. Langmuir, 1991, 7(6): 1167-1171. | 20 | ELIAD L, SALITRA G, SOFFER A, et al. Ion sieving effects in the electrical double layer of porous carbon electrodes: estimating effective ion size in electrolytic solutions[J]. The Journal of Physical Chemistry B, 2001, 105(29): 6880-6887. | 21 | TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367. | 22 | ROBINSON D M, GO Y B, GREENBLATT M, et al. Water oxidation by λ-MnO2: catalysis by the cubical Mn4O4 subcluster obtained by delithiation of spinel LiMn2O4[J]. J. Am. Chem. Soc., 2010, 41(45): 11467-11469. | 23 | XU X, ZHOU Y, FENG Z W, et al. A self-supported λ-MnO2 film electrode used for electrochemical lithium recovery from brines[J]. ChemPlusChem, 2018, 83(6): 521-528. | 24 | WANG L, MA W, LIU R, et al. Correlation between Li+ adsorption capacity and the preparation conditions of spinel lithium manganese precursor[J]. Solid State Ionics, 2006, 177(17/18): 1421-1428. | 25 | ZHENG H, CHEN X, YANG Y, et al. Self-assembled LiNi1/3Co1/3Mn1/3O2 nanosheet cathode with high electrochemical performance[J]. ACS Applied Materials & Interfaces, 2017, 9(45): 39560-39568. | 26 | ZHENG J, CHEN J, JIA X, et al. Electrochemical performance of the LiNi1/3Co1/3Mn1/3O2 in aqueous electrolyte[J]. Journal of the Electrochemical Society, 2010, 157(6): A702-A706. | 27 | LAWAGON C P, NISOLA G M, CUEVAS R A I, et al. Li1-xNi0.33Co1/3Mn1/3O2/Ag for electrochemical lithium recovery from brine[J]. Chemical Engineering Journal, 2018, 348(15): 1000-1011. | 28 | ZHAO Z W, SI X F, LIU X H, et al. Li extraction from high Mg/Li ratio brine with LiFePO4/FePO4 as electrode materials[J]. Hydrometallurgy, 2013, 133: 75-83. | 29 | ZHAO M Y, JI Z Y, ZHANG Y G, et al. Study on lithium extraction from brines based on LiMn2O4/Li1-xMn2O4 by electrochemical method[J]. Electrochimica Acta, 2017, 252(20): 350-361. | 30 | KIM S, LEE J, KIM S, et al. Electrochemical lithium recovery with a LiMn2O4-Zinc battery system using zinc as a negative electrode[J]. Energy Technology, 2018, 6(2): 340-344. | 31 | KANOH H, OOI K, MIYAI Y, et al. Electrochemical recovery of lithium ions in the aqueous phase[J]. Separation Science and Technology, 1993, 28(1/2/3): 643-651. | 32 | PASTA M, BATTISTEL A, MANTIA F L. Batteries for lithium recovery from brines[J]. Energy & Environmental Science, 2012, 5(11): 9487-9491. | 33 | JAEHAN L, SEUNG-HO Y, CHOONSOO K, et al. Highly selective lithium recovery from brine using a λ-MnO2-Ag battery[J]. Physical Chemistry Chemical Physics, 2013, 15(20): 7690-7695. | 34 | KIM S, LEE J, KANG J S, et al. Lithium recovery from brine using a λ-MnO2/activated carbon hybrid supercapacitor system[J]. Chemosphere, 2015, 125: 50-56. | 35 | 任丽, 王立新, 赵金玲, 等. 导电聚合物及导电聚吡咯的研究进展[J]. 材料导报, 2002(2): 60-62. | 35 | REN L, WANG L X, ZHAO J L, et al. Progress in research on conductive polymer and conductive polypyrrole[J]. Materials Review, 2002(2): 60-62. | 36 | WEIDLICH C, MANGOLD K M, JUTTNER K. Conducting polymers as ion-exchangers for water purification[J]. Electrochimica Acta, 2001, 47(5): 741-745. | 37 | 杜晓. 聚吡咯及其电活性离子印迹功能材料的可控合成与应用[D]. 太原: 太原理工大学, 2015. | 37 | DU X. Controllable synthesis and application of polypyrrole and its electroactive ion imprinted functional materials[D]. Taiyuan: Taiyuan University of Technology, 2015. | 38 | MARCHINI F, RUBI D, POZO M DEL, et al. Surface chemistry and lithium-ion exchange in LiMn2O4 for the electrochemical selective extraction of LiCl from natural salt lake brines[J]. Journal of Physical Chemistry C, 2016, 120(29): 15875-15883. | 39 | MISSONI L L, MARCHINI F, POZO M DEL, et al. A LiMn2O4-polypyrrole system for the extraction of LiCl from natural brine[J]. Journal of the Electrochemical Society, 2016, 163(9): A1898-A1902. | 40 | MARCHINI F, WILLIAMS F J, CALVO E J. Sustainable selective extraction of lithium chloride from natural brine using a Li1-xMn2O4 ion pump[J]. Journal of the Electrochemical Society, 2018, 165(14): A3292-A3298. | 41 | ZHAO Z W, SI X F, LIANG X X, et al. Electrochemical behavior of Li+, Mg2+, Na+ and K+ in LiFePO4/FePO4 structures[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(4): 1157-1164. | 42 | ZHAO Z W, SI X F, LIU X H, et al. Li extraction from high Mg/Li ratio brine with LiFePO4/FePO4 as electrode materials[J]. Hydrometallurgy, 2013, 133: 75-83. | 43 | LIU D F, SUN S Y, YU J G. A new high-efficiency process for Li+ recovery from solutions based on LiMn2O4/λ-MnO2 materials[J]. Chemical Engineering Journal, 2019, 377(1): 119825. | 44 | OKUMURA T, FUKUTSUKA T, MATSUMOTO K, et al. Lithium-ion transfer reaction at the interface between partially fluorinated insertion electrodes and electrolyte solutions[J]. The Journal of Physical Chemistry C, 2011, 115(26): 12990-12994. | 45 | KOBAYASHI S, UCHIMOTO Y. Lithium ion phase-transfer reaction at the interface between the lithium manganese oxide electrode and the nonaqueous electrolyte[J]. The Journal of Physical Chemistry B, 2005, 109(27): 13322-13326. |
|