1 | TANIELYAN S, SCHMIDT S, MARIN N, et al. Selective hydrogenation of 2-butyne-1,4-diol to 1,4-butanediol over particulate Raney? nickel catalysts[J]. Topics in Catalysis, 2010, 53(15/16/17/18): 1145-1149. | 2 | IRWIN R D. A review of evidence leading to the prediction that 1,4-butanediol is not a carcinogen[J]. Journal of Applied Toxicology, 2006, 26(1): 72-80. | 3 | ICHIKAWA S, OHGOMORI Y, SUMITANI N, et al. Process for manufacturing 1,4-butanediol from acrolein[J]. Industrial & Engineering Chemistry Research, 1995, 34(3): 971-973. | 4 | ZHANG Y, QI Y H, ZHANG Z P. Synthesis of PPG-TDI-BDO polyurethane and the influence of hard segment content on its structure and antifouling properties[J]. Progress in Organic Coatings, 2016, 97: 115-121. | 5 | MI R L, HU Z, YANG B L. In situ DRIFTS for the mechanistic studies of 1,4-butanediol dehydration over Yb/Zr catalysts[J]. Journal of Catalysis, 2019, 370: 138-151. | 6 | ZVOSEC D L, SMITH S W, MCCUTCHEON J R, et al. Adverse events, including death, associated with the use of 1,4-butanediol[J]. The New England journal of medicine, 2001, 344(2): 87-94. | 7 | STONKUS V, EDOLFA K, LEITE L, et al. Palladium-promoted Co-SiO2 catalysts for 1,4-butanediol cyclization[J]. Applied Catalysis A: General, 2009, 362(1/2): 147-154. | 8 | ZHANG B, ZHU Y L, DING G Q, et al. Modification of the supported Cu/SiO2 catalyst by alkaline earth metals in the selective conversion of 1,4-butanediol to γ-butyrolactone[J]. Applied Catalysis A: General, 2012, 443/444: 191-201. | 9 | 尚如静, 穆仕芳, 牛刚, 等. 煤基1,4-丁二醇及其衍生精细化学品市场分析[J]. 现代化工, 2018(2): 11-13. | 9 | SHANG Rujing, MU Shifang, NIU Gang, et al. Market analysis of coal based 1,4-butanediol and its derivative fine chemicals[J]. Modern Chemical Industry, 2018(2): 11-13. | 10 | MIN T, YI B X, ZHANG P, et al. Novel furoxan NO-donor pemetrexed derivatives: design, synthesis, and preliminary biological evaluation[J]. Medicinal Chemistry Research, 2009, 18(7): 495-510. | 11 | CSUK R, KERN A. Synthesis of spacered cyclopropyl nucleoside analogues as potential antiviral agents[J]. Tetrahedron, 1999, 55(28): 8409-8422. | 12 | DUAN H L, HIROTA T, OHTSUKA S, et al. Vapor-phase catalytic dehydration of 1,4-butanediol to 3-buten-1-ol over modified ZrO2 catalysts[J]. Applied Catalysis A: General, 2017, 535: 9-16. | 13 | SATO F, SATO S, YAMADA Y, et al. Acid-base concerted mechanism in the dehydration of 1,4-butanediol over bixbyite rare earth oxide catalysts[J]. Catalysis Today, 2014, 226: 124-133. | 14 | SAFDARNEJAD S M, GALLACHER J R, HEDENGREN J D. Dynamic parameter estimation and optimization for batch distillation[J]. Computer & Chemical Engineering, 2016, 86: 18-32. | 15 | BETLEM B, KRIJNSEN H C, HUIJNEN H. Optimal batch distillation control based on specific measures[J]. Chemical Engineering Journal, 1998, 71(2): 111-126. | 16 | BARAKAT T M M, FRAGA E S, S?RENSEN E. Multi-objective optimisation of batch separation processes[J]. Chemical Engineering and Processing: Process Intensification, 2008, 47(12): 2303-2314. | 17 | CONRADIE A V E, ALDRICH C. Neurocontrol of a multi-effect batch distillation pilot plant based on evolutionary reinforcement learning[J]. Chemical Engineering Science, 2010, 65(5): 1627-1643. | 18 | 许保云,宋云飞,翟金国. γ-十一内酯的反应精馏工艺开发与优化[J]. 化学工程, 2018, 46(12): 21-26. | 18 | XU B Y, SONG Y F, ZHAI J G. Design and optimization of reactive distillation process for production of undecan-4-olide[J]. Chemical Engineering (China), 2018, 46(12): 21-26. | 19 | 王传昌,许保云,艾波,等. 间歇精馏过程的多目标综合优化研究[J]. 现代化工, 2017, 37(5): 193-196. | 19 | WANG C C, XU B Y, AI B, et al. Study on multi-objective comprehensive optimization of batch distillation process[J]. Modern Chemical Industry, 2017, 37(5): 193-196. | 20 | 张国秋,王文璇. 均匀试验设计方法应用综述[J]. 数理统计与管理, 2013, 32(1): 89-99. | 20 | ZHANG G Q, WANG W X. A citation review on the uniform experimental design[J]. Journal of Applied Statistics and Management, 2013, 32(1): 89-99. | 21 | 王为国,吴元欣,王存文,等. 恒回流比间歇精馏的最小回流比计算及其能耗分析[J]. 化工学报, 2004, 55(8): 1285-1290. | 21 | WANG W G, WU Y X, WANG W C, et al. Algorithm of minimum reflux ratio of batch distillation under constant reflux rati o and its energy consumption analysis[J]. Journal of Chemical Industry and Engineering (China), 2004, 55(8): 1285-1290. | 22 | 崔现宝,张耀昌,杨志才. 多元间歇精馏拟夹紧区的变化规律[J]. 化工学报, 2008, 59(2): 371-380. | 22 | CUI X B, ZHANG Y C, YANG Z C. Evolution of pseudo-pinch point zone in multi-component batch distillation[J]. Journal of Chemical Industry and Engineering (China), 2008, 59(2): 371-380. | 23 | 陈义洋,冯惠生,李文秀,等. 减压间歇萃取精馏分离乙酸乙酯-乙醇过程模拟[J]. 化工进展, 2009, 28(S2): 393-395. | 23 | CHEN Y Y, FENG H S, LI W X, et al. Process Simulation of ethyl acetate-ethanol mixture separation by vacuum batch extractive distillation[J]. Chemical Industry and Engineering Progress, 2009, 28(S2): 393-395. | 24 | 王传昌,许保云,艾波,等. 基于UD-Aspen的间歇精馏过程优化设计研究[J]. 现代化工, 2016, 36(9): 175-177. | 24 | WANG C C, XU B Y, AI B, et al. Optimization of operation conditions of batch distillation based on the UD-Aspen[J]. Modern Chemical Industry, 2016, 36(9): 175-177. |
|