1 | FU F, WANG Q. Removal of heavy metal ions from wastewaters: a review[J]. Journal of Environmental Management, 2011, 92(3): 407-418. | 2 | SRIVASTAVA N K, MAJUMDER C B. Novel biofiltration methods for the treatment of heavy metals from industrial wastewater[J]. Journal of Hazardous Materials, 2008, 151(1): 1-8. | 3 | LU J, LI Y, YIN M, et al. Removing heavy metal ions with continuous aluminum electrocoagulation: a study on back mixing and utilization rate of electro-generated Al ions[J]. Chemical Engineering Journal, 2015, 267: 86-92. | 4 | CHENG S. Heavy metal pollution in China: origin, pattern and control[J]. Environmental Science and Pollution Research, 2003, 10(3): 192-198. | 5 | TRAN T K, LEU H J, CHIU K F, et al. Electrochemical treatment of heavy metal-containing wastewater with the removal of COD and heavy metal ions[J]. Journal of the Chinese Chemical Society, 2017, 64(5): 493-502. | 6 | WAN NGAH W S, TEONG L C, HANAFIAH M A K M. Adsorption of dyes and heavy metal ions by chitosan composites: a review[J]. Carbohydrate Polymers, 2011, 83(4): 1446-1456. | 7 | ZHAO X T, ZENG T, LI X Y, et al. Modeling and mechanism of the adsorption of copper ion onto natural bamboo sawdust[J]. Carbohydrate Polymers, 2012, 89(1): 185–192. | 8 | BESSBOUSSE H, RHLALOU T, VERCH RE J F, et al. Removal of heavy metal ions from aqueous solutions by filtration with a novel complexing membrane containing poly(ethyleneimine) in a poly(vinyl alcohol) matrix[J]. Journal of Membrane Science, 2008, 307(2): 249-259. | 9 | ALRASHDI B A M, JOHNSON D J, HILAL N. Removal of heavy metal ions by nanofiltration[J]. Desalination, 2013, 315: 2-17. | 10 | FU F, XIE L, TANG B, et al. Application of a novel strategy—advanced Fenton-chemical precipitation to the treatment of strong stability chelated heavy metal containing wastewater[J]. Chemical Engineering Journal, 2012, 189/190: 283-287. | 11 | DEMIR A, PAMUKCU S, SHRESTHA R A. Simultaneous removal of Pb, Cd, and Zn from heavily contaminated mine tailing soil using enhanced electrochemical process[J]. Environmental Engineering Science, 2015, 32(5): 416-424. | 12 | ALI H, KHAN E, SAJAD M A. Phytoremediation of heavy metals- concepts and applications[J]. Chemosphere, 2013, 91(7): 869-881. | 13 | KURNIAWAN T A, CHAN G Y S, LO W H, et al. Physico-chemical treatment techniques for wastewater laden with heavy metals[J]. Chemical Engineering Journal, 2006, 118(1/2): 83-98. | 14 | KANG J W. Removing environmental organic pollutants with bioremediation and phytoremediation[J]. Biotechnology Letters, 2014, 36(6): 1129-1139. | 15 | ALSHANNAG M, ALOODAH Z, BANIMELHEM, et al. Heavy metal ions removal from metal plating wastewater using electrocoagulation: kinetic study and process performance[J]. Chemical Engineering Journal, 2015, 260: 749-756. | 16 | AKBAL F, CAMCI S. Copper, chromium and nickel removal from metal plating wastewater by electrocoagulation[J]. Desalination, 2011, 269(1/2/3): 214-222. | 17 | HOU C H, HUANG C Y. A comparative study of electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization[J]. Desalination, 2013, 314: 124-129. | 18 | ? ARAR, ü YüKSEL, KABAY N, YüKSEL M. Various applications of electrodeionization (EDI) method for water treatment—a short review[J]. Desalination, 2014, 342: 16–22. | 19 | QODAH Z AL, SHANNAG M AL. Heavy metal ions removal from wastewater using electrocoagulation processes: a comprehensive review[J]. Separation Science and Technology, 2017, 52(17): 1-28. | 20 | OWLAD M, AROUA M K, DAUD W A W, et al. Removal of hexavalent chromium-contaminated water and wastewater: a review[J]. Water, Air, and Soil Pollution, 2008, 200(1/2/3/4): 59-77. | 21 | MAAROF H I, DAUD W M A W, AROUA M K. Recent trends in removal and recovery of heavy metals from wastewater by electrochemical technologies[J]. Reviews in Chemical Engineering, 2017, 33(4): 1-28. | 22 | LIU C, WU T, HSU P C, et al. Direct/alternating current electrochemical method for removing and recovering heavy metal from water using graphene oxide electrode[J]. ACS Nano, 2019, 13(6): 6431-6437. | 23 | MARTINS R, BRITTO-COSTA P H, RUOTOLO L A. Removal of toxic metals from aqueous effluents by electrodeposition in a spouted bed electrochemical reactor[J]. Environmental Technology, 2012, 33(10/11/12): 1123-1131. | 24 | MOOK W T, AROUA M K T, CHAKRABARTI M H, et al. A review on the effect of bio-electrodes on denitrification and organic matter removal processes in bio-electrochemical systems[J]. Journal of Industrial and Engineering Chemistry, 2013, 19(1): 1-13. | 25 | CHEN J. Decontaminaton of heavy metals: processes, mechanisms, and applications[M]. FL, USA: CRC Press, 2012. | 26 | 陈熙, 徐新阳, 赵冰, 等. 喷射床电沉积法处理铜镍混合废水[J]. 化工学报, 2015, 66(12): 5060-5066. | 26 | CHEN Xi, XU Xinyang, ZHAO Bing, et al. Treatment of copper-nickel mixed wastewater by spouted bed electro-deposition method[J]. CIESC Journal, 2015, 66(12): 5060-5066. | 27 | ALMAZAN-RUIZ F J, CABALLERO F V, CRUZDIAZ M R, et al. Scale-up of rotating cylinder electrode electrochemical reactor for Cu(Ⅱ) recovery: experimental and simulation study in turbulence regimen[J]. Electrochimica Acta, 2012, 77: 262-271. | 28 | LOW C T J, PONCE DE LEON C, WALSH F C. Electrodeposition of copper from mixed sulphate-chloride acidic electrolytes at a rotating disc electrode[J]. Transactions of the IMF, 2014, 92(5): 282-288. | 29 | RIVERO E P, GRANADOS P, RIVERA F F, CRUZ M, GONZALEZ I. Mass transfer modeling and simulation at a rotating cylinder electrode (RCE) reactor under turbulent flow for copper recovery[J]. Chem. Eng. Sci., 2010, 65: 3042-3049. | 30 | TREERATANAPHITAK T, PRITZKER M D, ABUKHDEIR N M. Kinetic Monte Carlo simulation of electrodeposition using the embedded-atom method[J]. Electrochimica Acta, 2014, 121: 407-414. | 31 | FICHTHORN K A, WEINBERG W H. Theoretical foundations of dynamical Monte Carlo simulations[J]. The Journal of Chemical Physics, 1991, 95(2): 1090-1096. | 32 | DAW M S, BASKES M I. Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals[J]. Physical Review B, 1984, 29(12): 6443-6453. | 33 | DAW M S, FOILES S M, BASKES M I. The embedded-atom method: a review of theory and applications[J]. Materials Science Reports, 1993, 9(7/8): 251-310. | 34 | MARISCAL M, LEIVA E, POTTING K, et al. The structure of electrodeposits—A computer simulation study[J]. Applied Physics A, 2007, 87(3): 385-389. | 35 | CHATTERJEE A, VLACHOS D G. An overview of spatial microscopic and accelerated kinetic Monte Carlo methods[J]. Journal of Computer-Aided Materials Design, 2007, 14(2): 253-308. | 36 | CHELLAMMAL S, RAGHU S, KALAISELVI P, et al. Electrolytic recovery of dilute copper from a mixed industrial effluent of high strength COD[J]. Journal of Hazardous Materials, 2010, 180(1/2/3): 91-97. | 37 | SU J, LIN X, ZHENG S, et al. Mass transport-enhanced electrodeposition for the efficient recovery of copper and selenium from sulfuric acid solution[J]. Separation and Purification Technology, 2017, 182: 160-165. | 38 | MARTIN P, KAREL B, MICHAL L, et al. Application of a three-dimensional electrode to the electrochemical removal of copper and zine ions from diluted solutions[J]. Water Environment Research, 2000, 72(5): 618-625. | 39 | 陈熙, 徐新阳, 任海燕, 等. 鼓氮电沉积法处理含铜废水的试验研究[J]. 安全与环境学报, 2014, 14(6): 139-142. | 39 | CHEN X, XU X Y, REN H Y, et al. Experimental study on the treatment of sewage with copper content with nitrogen-blowing electro-deposition[J]. Journal of Safety and Environment, 2014, 14(6): 139-142. | 40 | 郭岚峰. 电解金属锰电解槽多场耦合仿真与节能优化研究[D]. 重庆: 重庆大学, 2017. | 40 | GUO L F. Multi-field coupled numerical simulation and optimization for electrolytic metal manganese energy saving electrolytic cell [D]. Chongqing: Chongqing University, 2017. | 41 | ABOUSHADY A, PENG C, BI J, et al. Recovery of Pb(Ⅱ) and removal of NO3- from aqueous solutions using integrated electrodialysis, electrolysis, and adsorption process[J]. Desalination, 2012, 286: 304-315. | 42 | MARTIN C S, GOUVEIACARIDADE C, CRESPILHO F N, et al. Nickel-N,N’-bis(salicylidene)-1,3-propanediamine (Ni-Salpn) film-modified electrodes. Influence of electrodeposition conditions and of electrode material on electrochemical behaviour in aqueous solution[J]. Electrochimica Acta, 2015, 178: 80-91. | 43 | LIU Y, YAN J, YUAN D, et al. The study of lead removal from aqueous solution using an electrochemical method with a stainless steel net electrode coated with single wall carbon nanotubes[J]. Chemical Engineering Journal, 2013, 218: 81-88. | 44 | LI H, PAN L, LU T, et al. A comparative study on electrosorptive behavior of carbon nanotubes and graphene for capacitive deionization[J]. Journal of Electroanalytical Chemistry, 2011, 653(1/2): 40-44. | 45 | GUMPU M B, VEERAPANDIAN M, KRISHNAN U M, et al. Simultaneous electrochemical detection of Cd(Ⅱ), Pb(Ⅱ), As(Ⅲ) and Hg(Ⅱ) ions using ruthenium(Ⅱ)-textured graphene oxide nanocomposite[J]. Talanta, 2017, 162: 574-582. | 46 | LI X, LI H, XU X, et al. Preparation of a reduced graphene oxide @ stainless steel net electrode and its application of electrochemical removal Pb(Ⅱ)[J]. Journal of the Electrochemical Society, 2017, 164(4): E71-E77. | 47 | ZHANG Y, ZHANG D, ZHOU L, et al. Polypyrrole/reduced graphene oxide aerogel particle electrodes for high-efficiency electro-catalytic synergistic removal of Cr(Ⅵ) and bisphenol A[J]. Chemical Engineering Journal, 2018, 336: 690-700. | 48 | LAMYMENDES A, SILVA R F, DURAES L. Advances in carbon nanostructure-silica aerogel composites: a review[J]. Journal of Materials Chemistry A, 2018, 6(4): 1340-1369. | 49 | HAO P, MA X, XIE J, et al. Removal of toxic metal ions using chitosan coated carbon nanotube composites for supercapacitors[J]. Science China Chemistry, 2018, 61(7): 797-805. | 50 | VERDUZCO L E, OLIVA J, OLIVA A I, et al. Enhanced removal of arsenic and chromium contaminants from drinking check water by electrodeposition technique using graphene composites[J]. Materials Chemistry and Physics, 2019, 229: 197-209. | 51 | LIU Y, WU X, YUAN D, et al. Removal of nickel from aqueous solution using cathodic deposition of nickel hydroxide at a modified electrode[J]. Journal of Chemical Technology & Biotechnology, 2013, 88(12): 2193-2200. | 52 | RAGHU S, AHMED BASHA C. Treatment of dye bath effluent and simultaneous generation of sodium hydroxide using electrochemical ion-exchange membrane process[J]. Ind. Eng. Chem. Res., 2008, 47: 5277-5283. | 53 | ABOU SHADY A, PENG C, BI J, et al. Recovery of Pb(Ⅱ) and removal of NO3- from aqueous solutions using integrated electrodialysis, electrolysis, and adsorption process[J]. Desalination, 2012, 286: 304-315. | 54 | PENG C, JIN R, LI G, et al. Recovery of nickel and water from wastewater with electrochemical combination process[J]. Separation and Purification Technology, 2014, 136: 42-49. | 55 | 苏赛赛, 李艳静, 岳秀萍, 等. 电沉积法处理电解锌漂洗废水的动力学研究[J]. 环境工程, 2011(s1): 29-31, 62. | 55 | SU S, LI Y, YUE X, et al. Research on kinetics of treatment of electrolytic zinc wastewater by electrodeposition[J]. Environmental Engineering, 2011(s1): 29-31, 62. | 56 | 印永嘉, 奚正楷, 张树永, 等. 物理化学简明教程[M]. 4版. 北京: 高等教育出版社, 2007: 272 | 56 | YIN Y J, XI Z K, ZHANG S Y, et al. A short course of physical chemistry [M]. 4th ed. Beijing: Higher Education Press, 2007: 272. | 57 | BHATLURI K K, MANNA M S, GHOSHAL A K, et al. Separation of cadmium and lead from wastewater using supported liquid membrane integrated with in-situ electrodeposition[J]. Electrochimica Acta, 2017, 229: 1-7. | 58 | 蔡芬敏. 电沉积参数对电解铜箔组织性能的影响[D]. 南昌: 南昌大学, 2011.CAI F M. Influence of different process parameters on appearance structure and mechanical properties of electrolysis copper foil [D]. Nanchang: Nanchang University, 2011. | 59 | HAMLAOUI Y, TIFOUTI L, REMAZEILLES C, et al. Cathodic electrodeposition of cerium based oxides on carbon steel from concentrated cerium nitrate. Part Ⅱ: influence of electrodeposition parameters and of the addition of PEG[J]. Materials Chemistry and Physics, 2010, 120(1): 172-180. | 60 | NING D, YANG C, WU H. Ultrafast Cu2+ recovery from waste water by jet electrodeposition[J]. Separation and Purification Technology, 2019, 220: 217-221. | 61 | 陈志新, 曾坚贤, 刘国清. 电沉积处理络合-超滤过程中含镍浓缩液[J]. 现代化工, 2017, 37(4): 92-95. | 61 | CHEN Zhixin, ZENG Jianxian, LIU Guoqing. Recovery of nickel ions from concentrated wastewater by electrodeposition method[J]. Modern Chemical Industry, 2017, 37(4): 92-95. | 62 | 许文杰, 虢清伟, 许振成, 等. 电沉积处理含镉废水的性能研究[J]. 水污染防治, 2015(1): 23-31. | 62 | XU Wenjie, GUO Qingwei, XU Zhencheng, et al. Performance of cadmium wastewater treatment by electrodeposition[J]. Environmental Engineering, 2015(1): 23-31. | 63 | 樊金鹏. 光助阳极电沉积制备纳米结构CeO2薄膜的研究[D]. 杭州: 浙江大学, 2013.FAN J P. Study on the Photoassisted anodic electrodeposition of nanostructured CeO2 films[D]. Hangzhou: Zhejiang University, 2013. | 64 | MENDOZA-HUIZAR L H, RIOSREYES C H. Cobalt electrodeposition on polycrystalline palladium. Influence of temperature on kinetic parameters[J]. Journal of Solid State Electrochemistry, 2012, 16(9): 2899–2906. | 65 | 麻丽峰. 电沉积回收模拟含重金属废水中重金属实验研究[D]. 天津: 天津大学, 2007. | 65 | MA L F. Electrodeposition recovery of heavy metals contained in membrane filtration-electrodeposition process [D]. Tianjin: Tianjin University, 2007. | 66 | 王宏丹, 任兵芝, 夏文堂, 等. 工艺条件对锌电解能耗的影响[J]. 有色金属(冶炼部分), 2018 (3): 6-8, 13. | 66 | WANG Hongdan, REN Bingzhi, XIA Wentang, et al. Effect of process parameters on power consumption of zinc electrowinning[J]. Nonferrous Metals (Ectractive Metallurgy), 2018 (3): 6-8, 13. | 67 | ZHOU Y X, YAN K J. Study on electrodeposition recovery of cupric and zinc in complexation ultrafiltration process[J]. Advanced Materials Research, 2013, 777: 52-55. | 68 | 晋瑞杰. 电化学联合工艺实现含镍废水的资源化研究[D]. 青岛: 中国海洋大学, 2013.JIN R J. Recovery of nickel and water from nickel containing wastewater using electrochemical combination process [D]. Qingdao: Ocean University of China, 2013. | 69 | 蒋家超, 郭翠香, 赵由才. 铜离子对碱液电积铅过程的影响及其去除[J]. 有色冶金设计与研究, 2009, 30(6): 33-36. | 69 | JIANG Jiachao, GUO Cuixiang, ZHAO Youcai. Removal and influence of copper ion on lead electrowining in alkaline solution[J]. Nonferrous Metals Engineering & Research, 2009, 30(6): 33-36. | 70 | 朱军, 高首坤, 赵奇, 等. F-和Cl-浓度对电沉积锌电化学过程的影响[J]. 材料保护, 2018, 51(1): 28-30, 110. | 70 | ZHU Jun, GAO Shoukun, ZHAO Qi, et al. Influence of F- and Cl- concentrations on the electrodeposited zinc process[J]. Materials Protection, 2018, 51(1): 28-30, 110. | 71 | LIU C, HSU P C, XIE J, et al. A half-wave rectified alternating current electrochemical method for uranium extraction from seawater[J]. Nature Energy, 2017, 2(4): 17007. | 72 | AMARESH C M, AWALENDRA K T, SRINIVAS V. Effect of deposition parameters on microstructure of electrodeposited nickel thin films[J]. Journal of Materials Science, 2009, 44: 3520-3527. | 73 | SU Y B, LI Q B, WANG Y P, et al. Electrochemical reclamation of silver from silver-plating wastewater using static cylinder electrodes and a pulsed electric field[J]. J. Hazard. Mater., 2009, 170(2/3): 1164-1172. | 74 | 李想, 吴雅琴, 朱圆圆, 等. 电沉积处理含铜强酸废水阴极回收纳米铜[J]. 水处理技术, 2018, 44(3): 34-38. | 74 | LI Xiang, WU Yaqin, ZHU Yuanyuan, et al. Nano-copper recovery at cathode in high acid wastewater containing copper by elcctro-deposition method[J]. Technology of Water Treatment, 2018, 44(3): 34-38. | 75 | YOU R W, LEW K K, FU Y P. Effect of indium concentration on electrochemical properties of electrode-electrolyte interface of CuIn1-xGaxSe2 prepared by electrodeposition[J]. Materials Research Bulletin, 2017, 96: 183-187. | 76 | CHOI J Y, KIM D S. Production of ultrahigh purity copper using waste copper nitrate solution[J]. Journal of Hazardous Materials, 2003, B99: 147-158. | 77 | ZHAO X, GUO L, HU C, et al. Simultaneous destruction of nickel (Ⅱ)-EDTA with TiO2/Ti film anode and electrodeposition of nickel ions on the cathode[J]. Applied Catalysis B: Environmental, 2014, 144: 478-485. | 78 | LI Yanjing, SU Saisai, YUE Xiuping, et al. Electro-deposition experiment of electrolytic zinc rinsing wastewater[J]. Chinese Journal of Environmental Engineering, 2012, 6(2): 429-434. | 79 | BASHA C A, BHADRINARAYANA N S, ANANTHARAMAN N, et al. Heavy metal removal from copper smelting effluent using electrochemical cylindrical flow reactor[J]. J. Hazard. Mater., 2008, 152: 71-78. | 80 | GUAN W, TIAN S, CAO D, et al. Electrooxidation of nickel-ammonia complexes and simultaneous electrodeposition recovery of nickel from practical nickel-electroplating rinse wastewater[J]. Electrochimica Acta, 2017, 246: 1230-1236. | 81 | CHEN Y, YANG J, ZHAO F, et al. A research on recovery of zinc ions in electroplating wastewater by ultrasonic pulse electrode position method[J]. Electroplating&Pollution Control, 2014, 34(1): 46-49. | 82 | BISANG J M, BOGADO F, RIVERA M O, et al. Electrochemical removal of arsenic from technical grade phosphoric acid[J]. Journal of Applied Electrochemistry, 2004, 34(4): 375-381. | 83 | SUPRIYO K M, MANOJ K B, PRABIRKUMAR S. Separation and recovery of nickel and zinc from synthetic wastewater using supported liquid membranes with in situ electrodeposition[J]. Industrial & Engineering Chemistry Research, 2019, 58: 9970-9987. | 84 | 王刚, 张炜铭, 杨柽瀚, 等. 扩散渗析-电沉积联合工艺资源回收酸性含铜树脂脱附液[J]. 膜科学与技术, 2017, 37(5): 103-109. | 84 | WANG Gang, ZHANG Weiming, YANG Chenghan, et al. Resource recovery treatment of an acidic resin regenerant containing Cu2+ using diffusion dialysis and electrodeposition[J]. Membrane Science and Technology, 2017, 37(5): 103-109. | 85 | LI Tiancheng, JIANG Bin, FENG Xia, et al. Purification of organic wastewater containing Cu2+ and Cr3+ by a combined process of micro electrolysis and biofilm[J]. Chinese J. Chem. Eng., 2003, 11(2): 146-150. | 86 | ZHANG H M, FAN Z, XU W, et al. Retrieval of Au, Ag, Cu precious metals coupled with electric energy production via an unconventional coupled redox fuel cell reactor[J]. Journal of Hazardous Materials, 2017, 338: 194-201. | 87 | SONG Y, TSUCHIDA Y, MATSUMIYA M, et al. Recovery of ruthenium by solvent extraction and direct electrodeposition using ionic liquid solution[J]. Hydrometallurgy, 2018, 181: 164-168. | 88 | BAKKAR A, NEUBER V. Recycling of cupola furnace dust: Extraction and electrodeposition of zinc in deep eutectic solvents[J]. Journal of Alloys and Compounds, 2019, 229: 197-209. |
|