化工进展 ›› 2019, Vol. 38 ›› Issue (11): 5200-5209.DOI: 10.16085/j.issn.1000-6613.2019-0143
• 化工园区 • 上一篇
收稿日期:
2019-01-21
出版日期:
2019-11-05
发布日期:
2019-11-05
通讯作者:
王峰
作者简介:
曾稳稳(1995—),女,硕士研究生,研究方向为化工安全。E-mail:基金资助:
Wenwen ZENG1(),Fujie DENG1,Jingbo CAI2,Feng WANG1()
Received:
2019-01-21
Online:
2019-11-05
Published:
2019-11-05
Contact:
Feng WANG
摘要:
环氧乙烷是一种易燃易爆有毒致癌物,一旦发生泄漏,将造成严重后果。应用实时连续监测预警系统是防控环氧乙烷泄漏着火爆炸的有效手段。常用的气体泄漏后果模拟软件仅能完成单点离线预测,其模型预测结果很难应用于连续监测预警。多参数耦合关系的辨识及其影响效应的定量计算准确性是泄漏监测预警的难点。本文提出环氧乙烷反应器泄漏实时监测预警模型构建方法,确定化工过程实际生产中参数变化范围,基于UDM模型多参数进行正交试验模拟计算环氧乙烷反应器泄漏后扩散、着火、爆炸等事故后果;基于事故后果信息进行压力、温度、泄漏口径、泄漏高度及环境变化等多因素的关联分析,确定影响事故后果的主要影响因素为泄漏口径与泄漏高度;基于主要影响因素的不同事故后果信息数据回归拟合事故后果的定量预测模型;根据泄漏实际工况的多种工艺参数,利用定量预测模型计算事故后果,利用PHAST软件对连续监测预警模型的结果进行对比验证。结果表明该模型与PHAST计算结果基本一致,误差在允许范围内,可用于定量实时连续预测计算。最后,本文依据该方法和实时监测预警模型构建实时连续监测预警系统,根据实际生产过程实时变化进行多参数渠道采集,实现泄漏风险实时连续监测预警,进而为事故预警和应急救援提供技术依据。
中图分类号:
曾稳稳,邓付洁,蔡静波,王峰. 环氧乙烷反应器泄漏实时监测预警模型构建方法及应用[J]. 化工进展, 2019, 38(11): 5200-5209.
Wenwen ZENG,Fujie DENG,Jingbo CAI,Feng WANG. Construction method and application of real-time monitoring and warning model of ethylene oxide reactor leakage[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 5200-5209.
物料组分 | 物料性质 | 质量 | 操作温度 | 操作压力 | 反应器尺寸 | 进出料接管 | 混合气出口流量 |
---|---|---|---|---|---|---|---|
环氧乙烷、乙烯、 氧气、二氧化碳、氮气 | 易燃易爆 | 500kg | 210℃ | 1MPa | 直径5m, 高度20m | DN150mm | 9247.788kg/h |
表1 环氧乙烷反应器基本工艺参数
物料组分 | 物料性质 | 质量 | 操作温度 | 操作压力 | 反应器尺寸 | 进出料接管 | 混合气出口流量 |
---|---|---|---|---|---|---|---|
环氧乙烷、乙烯、 氧气、二氧化碳、氮气 | 易燃易爆 | 500kg | 210℃ | 1MPa | 直径5m, 高度20m | DN150mm | 9247.788kg/h |
水平 | P压力 /MPa | T温度 /℃ | L泄漏 口径/mm | H泄漏 高度/m | V风速 /m·s-1 |
---|---|---|---|---|---|
1 | 0.5 | 180 | 5 | 0.1 | 1.5 |
2 | 1 | 200 | 25 | 5 | 3 |
3 | 1.5 | 220 | 100 | 10 | 4.5 |
4 | 2 | 240 | 150 | 20 | 6 |
表2 因素水平表
水平 | P压力 /MPa | T温度 /℃ | L泄漏 口径/mm | H泄漏 高度/m | V风速 /m·s-1 |
---|---|---|---|---|---|
1 | 0.5 | 180 | 5 | 0.1 | 1.5 |
2 | 1 | 200 | 25 | 5 | 3 |
3 | 1.5 | 220 | 100 | 10 | 4.5 |
4 | 2 | 240 | 150 | 20 | 6 |
试验号 | P/MPa | T/℃ | L/mm | H/m | V/m·s-1 | 燃烧下限 影响范围/m |
---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 1 | 0.7411 |
2 | 1 | 2 | 2 | 2 | 2 | 3.5651 |
3 | 1 | 3 | 3 | 3 | 3 | 13.4369 |
4 | 1 | 4 | 4 | 4 | 4 | 19.6324 |
5 | 2 | 1 | 2 | 3 | 4 | 4.9025 |
6 | 2 | 2 | 1 | 4 | 3 | 1.0360 |
7 | 2 | 3 | 4 | 1 | 2 | 80.5379 |
8 | 2 | 4 | 3 | 2 | 1 | 18.7395 |
9 | 3 | 1 | 3 | 4 | 2 | 23.9758 |
10 | 3 | 2 | 4 | 3 | 1 | 35.5014 |
11 | 3 | 3 | 1 | 2 | 4 | 1.1626 |
12 | 3 | 4 | 2 | 1 | 3 | 10.7098 |
13 | 4 | 1 | 4 | 2 | 3 | 38.3932 |
14 | 4 | 2 | 3 | 1 | 4 | 112.105 |
15 | 4 | 3 | 2 | 4 | 1 | 6.9271 |
16 | 4 | 4 | 1 | 3 | 2 | 1.3559 |
k 1 | 9.3439 | 17.0032 | 1.0739 | 51.0235 | 15.4773 | — |
k 2 | 26.3040 | 38.0519 | 6.5261 | 33.8931 | 34.4506 | — |
k 3 | 17.8374 | 25.5161 | 42.0643 | 13.7992 | 15.8940 | — |
k 4 | 39.6953 | 12.6094 | 43.5162 | 12.9603 | 8.1562 | — |
极差R | 30.3514 | 25.4425 | 42.4423 | 38.0632 | 26.2944 | — |
主次顺序 | 泄漏口径>泄漏高度>压力>风速>环境温度 | |||||
最优水平 | P 4 | T 2 | L 4 | H 1 | V 2 | |
最优组合 | P 4 T 2 L 4 H 1 V 2 |
表3 试验方案及结果分析
试验号 | P/MPa | T/℃ | L/mm | H/m | V/m·s-1 | 燃烧下限 影响范围/m |
---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 1 | 0.7411 |
2 | 1 | 2 | 2 | 2 | 2 | 3.5651 |
3 | 1 | 3 | 3 | 3 | 3 | 13.4369 |
4 | 1 | 4 | 4 | 4 | 4 | 19.6324 |
5 | 2 | 1 | 2 | 3 | 4 | 4.9025 |
6 | 2 | 2 | 1 | 4 | 3 | 1.0360 |
7 | 2 | 3 | 4 | 1 | 2 | 80.5379 |
8 | 2 | 4 | 3 | 2 | 1 | 18.7395 |
9 | 3 | 1 | 3 | 4 | 2 | 23.9758 |
10 | 3 | 2 | 4 | 3 | 1 | 35.5014 |
11 | 3 | 3 | 1 | 2 | 4 | 1.1626 |
12 | 3 | 4 | 2 | 1 | 3 | 10.7098 |
13 | 4 | 1 | 4 | 2 | 3 | 38.3932 |
14 | 4 | 2 | 3 | 1 | 4 | 112.105 |
15 | 4 | 3 | 2 | 4 | 1 | 6.9271 |
16 | 4 | 4 | 1 | 3 | 2 | 1.3559 |
k 1 | 9.3439 | 17.0032 | 1.0739 | 51.0235 | 15.4773 | — |
k 2 | 26.3040 | 38.0519 | 6.5261 | 33.8931 | 34.4506 | — |
k 3 | 17.8374 | 25.5161 | 42.0643 | 13.7992 | 15.8940 | — |
k 4 | 39.6953 | 12.6094 | 43.5162 | 12.9603 | 8.1562 | — |
极差R | 30.3514 | 25.4425 | 42.4423 | 38.0632 | 26.2944 | — |
主次顺序 | 泄漏口径>泄漏高度>压力>风速>环境温度 | |||||
最优水平 | P 4 | T 2 | L 4 | H 1 | V 2 | |
最优组合 | P 4 T 2 L 4 H 1 V 2 |
事故后果 | 拟合公式 | R |
---|---|---|
燃烧极限 | ||
UFL | | |
LFL | x∈(0, 20); 25<y≤150 | 0.9988 |
| ||
x∈(0, 20);0<y≤25 | ||
| ||
LFL Frac | x∈(0, 20); 25<y≤150 | 0.9993 |
| ||
x∈(0, 20); 0<y≤25 | ||
| ||
喷射火辐射强度 | ||
4 kW/m2 | | 0.9886 |
12.5 kW/m2 | | 0.9997 |
37.5 kW/m2 | | 0.9999 |
爆炸超压范围 | ||
0.02 bar | | 0.9775 |
0.13 bar | x∈(0, 20); y∈(0, 150), y≠25, 100 | 0.9837 |
| ||
x∈(0, 20); y=25, 100 | ||
| ||
0.2 bar | x∈(0, 20); y∈(0,150), y≠25, 150 | 0.9918 |
| ||
x∈(0, 20); y=25, 100 | ||
|
表4 大气稳定度F和风速1.5m/s情况下的拟合公式组
事故后果 | 拟合公式 | R |
---|---|---|
燃烧极限 | ||
UFL | | |
LFL | x∈(0, 20); 25<y≤150 | 0.9988 |
| ||
x∈(0, 20);0<y≤25 | ||
| ||
LFL Frac | x∈(0, 20); 25<y≤150 | 0.9993 |
| ||
x∈(0, 20); 0<y≤25 | ||
| ||
喷射火辐射强度 | ||
4 kW/m2 | | 0.9886 |
12.5 kW/m2 | | 0.9997 |
37.5 kW/m2 | | 0.9999 |
爆炸超压范围 | ||
0.02 bar | | 0.9775 |
0.13 bar | x∈(0, 20); y∈(0, 150), y≠25, 100 | 0.9837 |
| ||
x∈(0, 20); y=25, 100 | ||
| ||
0.2 bar | x∈(0, 20); y∈(0,150), y≠25, 150 | 0.9918 |
| ||
x∈(0, 20); y=25, 100 | ||
|
泄漏场景 | 泄漏口径/mm | 泄漏高度/m | 风速/m·s-1 | 大气稳定度 |
---|---|---|---|---|
WCS | 150 | 0.1 | 1.5 | F |
1 | 5 | 0.1 | 1.5 | F |
2 | 25 | 0.1 | 1.5 | F |
3 | 150 | 20 | 1.5 | F |
表5 泄漏场景条件
泄漏场景 | 泄漏口径/mm | 泄漏高度/m | 风速/m·s-1 | 大气稳定度 |
---|---|---|---|---|
WCS | 150 | 0.1 | 1.5 | F |
1 | 5 | 0.1 | 1.5 | F |
2 | 25 | 0.1 | 1.5 | F |
3 | 150 | 20 | 1.5 | F |
泄漏场景 | 燃烧爆炸影响范围/m | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
LFL | LFL Frac | R4 | R12.5 | |||||||||
拟合值 | PHAST | 误差/% | 拟合值 | PHAST | 误差/% | 拟合值 | PHAST | 误差/% | 拟合值 | PHAST | 误差/% | |
WCS | 92.6264 | 92.5521 | 0.8 | 212.272 | 210.91 | 0.65 | 90.0927 | 90.2227 | 0.14 | 69.0719 | 69.0197 | 0.08 |
1 | 1.1014 | 1.00003 | | 2.0338 | 2.2692 | | 2.9553 | 2.8026 | 5.45 | — | n/a① | — |
2 | 8.2756 | 8.2816 | 0.07 | 24.9947 | 23.534 | 6.21 | 14.7460 | 14.8318 | 0.58 | 12.3843 | 12.5982 | 1.70 |
3 | 30.9720 | 30.2434 | 2.41 | 60.0268 | 58.4786 | 2.65 | 85.4773 | 85.1488 | 0.39 | 53.1743 | 53.1847 | 0.20 |
平均误差 | 4.38 | 平均误差 | 5.11 | 平均误差 | 1.64 | 平均误差 | 0.66 | |||||
泄漏场景 | 燃烧爆炸影响范围/m | |||||||||||
R37.5 | OP0.02 | OP0.13 | OP0.2 | |||||||||
拟合值 | PHAST | 误差/% | 拟合值 | PHAST | 误差/% | 拟合值 | PHAST | 误差/% | 拟合值 | PHAST | 误差/% | |
WCS | 54.7639 | 54.8209 | 0.10 | 279.3517 | 282.137 | 0.99 | 162.4603 | 157.507 | 3.14 | 160.793 | 155.628 | 3.32 |
1 | — | n/a | — | — | n/a | — | — | n/a | — | — | n/a | — |
2 | 10.4994 | 10.5045 | 0.05 | 42.7769 | 39.2894 | 8.88 | 22.3704 | 23.749 | 5.80 | 22.1208 | 22.8109 | 3.02 |
3 | — | n/a | — | 137.8624 | 127.568 | 8.07 | 67.0935 | 65.0759 | 3.10 | 62.9202 | 61.3033 | 2.64 |
平均误差 | 0.13 | 平均误差 | 6.16 | 平均误差 | 3.39 | 平均误差 | 3.44 | |||||
① n/a表示无数据。 |
表6 大气稳定度F和风速1.5m/s情况下计算结果与PHAST对比
泄漏场景 | 燃烧爆炸影响范围/m | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
LFL | LFL Frac | R4 | R12.5 | |||||||||
拟合值 | PHAST | 误差/% | 拟合值 | PHAST | 误差/% | 拟合值 | PHAST | 误差/% | 拟合值 | PHAST | 误差/% | |
WCS | 92.6264 | 92.5521 | 0.8 | 212.272 | 210.91 | 0.65 | 90.0927 | 90.2227 | 0.14 | 69.0719 | 69.0197 | 0.08 |
1 | 1.1014 | 1.00003 | | 2.0338 | 2.2692 | | 2.9553 | 2.8026 | 5.45 | — | n/a① | — |
2 | 8.2756 | 8.2816 | 0.07 | 24.9947 | 23.534 | 6.21 | 14.7460 | 14.8318 | 0.58 | 12.3843 | 12.5982 | 1.70 |
3 | 30.9720 | 30.2434 | 2.41 | 60.0268 | 58.4786 | 2.65 | 85.4773 | 85.1488 | 0.39 | 53.1743 | 53.1847 | 0.20 |
平均误差 | 4.38 | 平均误差 | 5.11 | 平均误差 | 1.64 | 平均误差 | 0.66 | |||||
泄漏场景 | 燃烧爆炸影响范围/m | |||||||||||
R37.5 | OP0.02 | OP0.13 | OP0.2 | |||||||||
拟合值 | PHAST | 误差/% | 拟合值 | PHAST | 误差/% | 拟合值 | PHAST | 误差/% | 拟合值 | PHAST | 误差/% | |
WCS | 54.7639 | 54.8209 | 0.10 | 279.3517 | 282.137 | 0.99 | 162.4603 | 157.507 | 3.14 | 160.793 | 155.628 | 3.32 |
1 | — | n/a | — | — | n/a | — | — | n/a | — | — | n/a | — |
2 | 10.4994 | 10.5045 | 0.05 | 42.7769 | 39.2894 | 8.88 | 22.3704 | 23.749 | 5.80 | 22.1208 | 22.8109 | 3.02 |
3 | — | n/a | — | 137.8624 | 127.568 | 8.07 | 67.0935 | 65.0759 | 3.10 | 62.9202 | 61.3033 | 2.64 |
平均误差 | 0.13 | 平均误差 | 6.16 | 平均误差 | 3.39 | 平均误差 | 3.44 | |||||
① n/a表示无数据。 |
泄漏场景 | 燃烧爆炸影响范围/m | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
LFL | LFLFrac | R4 | R12.5 | |||||||||
拟合值 | PHAST | 误差/% | 拟合值 | PHAST | 误差/% | 拟合值 | PHAST | 误差/% | 拟合值 | PHAST | 误差/% | |
1 | 4.5698 | 5.0550 | 9.60 | 9.9290 | 9.8812 | 0.48 | 11.4795 | 11.176 | 2.72 | — | n/a | — |
2 | 19.0568 | 20.0497 | 4.95 | 37.3136 | 38.7455 | 3.69 | 59.5836 | 59.8023 | 0.37 | 40.0339 | 40.9058 | 2.13 |
3 | 5.1535 | 5.0965 | 1.12 | 10.1047 | 10.0517 | 0.53 | — | n/a | — | — | n/a | — |
4 | 1.0443 | 1.046 | 0.16 | 2.1070 | 2.1023 | 0.22 | — | n/a | — | — | n/a | — |
5 | 19.5824 | 19.8553 | 1.37 | 38.7844 | 38.4228 | 0.94 | 61.0811 | 61.1145 | 0.05 | 44.8857 | 44.7614 | 0.28 |
6 | 19.0866 | 20.2543 | 5.77 | 39.2825 | 39.3569 | 0.19 | 53.1363 | 53.2478 | 0.21 | — | n/a | — |
7 | 29.5492 | 29.8581 | 1.03 | 57.8708 | 57.8313 | 0.07 | 89.1965 | 89.1199 | 0.09 | 62.8395 | 62.0981 | 1.19 |
8 | 1.1229 | 1.0273 | 9.31 | 2.0572 | 2.0366 | 1.01 | — | n/a | — | n/a | — | |
9 | 29.0097 | 29.5884 | 1.96 | 60.7996 | 59.1277 | 2.83 | 89.9903 | 90.0145 | 0.03 | 66.0446 | 66.2222 | 0.27 |
10 | 57.1489 | 57.7271 | 1.00 | 143.6671 | 145.8 | 1.46 | 61.4674 | 61.3628 | 0.17 | 48.3041 | 48.0616 | 0.05 |
11 | 5.1720 | 5.1520 | 0.39 | 10.4377 | 10.233 | 2.00 | — | n/a | — | — | n/a | — |
12 | 1.0336 | 1.0357 | 0.20 | 2.0800 | 2.0671 | 0.62 | — | n/a | — | — | n/a | — |
平均误差 | 3.07 | 平均误差 | 1.17 | 平均误差 | 0.52 | 平均误差 | 0.78 | |||||
燃烧爆炸影响范围/m | ||||||||||||
泄漏场景 | R37.5 | OP0.02 | OP0.13 | OP0.2 | ||||||||
拟合值 | PHAST | 误差/% | 拟合值 | PHAST | 误差/% | 拟合值 | PHAST | 误差/% | 拟合值 | PHAST | 误差/% | |
1 | — | n/a | — | — | n/a | — | — | n/a | — | — | n/a | — |
2 | — | n/a | — | 90.0796 | 81.8921 | 9.99 | 39.5597 | 40.0856 | 1.31 | 37.5773 | 37.5618 | 0.04 |
3 | — | n/a | — | 20.9559 | 23.0971 | 9.27 | 13.7665 | 12.5455 | 9.73 | 11.8891 | 11.9085 | 0.16 |
4 | — | n/a | — | — | n/a | — | — | n/a | — | — | n/a | — |
5 | 28.5267 | 28.5258 | 0.003 | 75.0891 | 81.9273 | 8.35 | 41.9645 | 40.0924 | 4.67 | 38.2347 | 37.5669 | 1.78 |
6 | — | n/a | — | 88.5139 | 81.7954 | 8.21 | 36.8960 | 40.0668 | 7.91 | 35.6545 | 37.5477 | 5.04 |
7 | — | n/a | — | 123.6380 | 127.488 | 3.20 | 59.4687 | 65.0603 | 8.59 | 56.1884 | 61.2916 | 8.33 |
8 | — | n/a | — | — | n/a | — | — | n/a | — | — | n/a | — |
9 | 49.1390 | 49.1393 | 0.001 | 140.9351 | 127.387 | | 61.8995 | 65.0406 | 4.83 | 56.0099 | 61.2769 | 8.60 |
10 | 38.8212 | 38.7396 | 0.21 | 262.4393 | 247.412 | 6.07 | 154.7719 | 158.366 | 2.27 | 150.585 | 153.77 | 2.07 |
11 | — | n/a | — | 21.9442 | 23.0989 | 4.99 | 13.7299 | 12.5459 | 9.44 | 11.5666 | 11.9088 | 2.87 |
12 | — | n/a | — | — | n/a | — | — | n/a | — | — | n/a | — |
平均误差 | 0.07 | 平均误差 | 7.59 | 平均误差 | 6.10 | 平均误差 | 3.61 |
表7 其他情况下计算结果与PHAST对比
泄漏场景 | 燃烧爆炸影响范围/m | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
LFL | LFLFrac | R4 | R12.5 | |||||||||
拟合值 | PHAST | 误差/% | 拟合值 | PHAST | 误差/% | 拟合值 | PHAST | 误差/% | 拟合值 | PHAST | 误差/% | |
1 | 4.5698 | 5.0550 | 9.60 | 9.9290 | 9.8812 | 0.48 | 11.4795 | 11.176 | 2.72 | — | n/a | — |
2 | 19.0568 | 20.0497 | 4.95 | 37.3136 | 38.7455 | 3.69 | 59.5836 | 59.8023 | 0.37 | 40.0339 | 40.9058 | 2.13 |
3 | 5.1535 | 5.0965 | 1.12 | 10.1047 | 10.0517 | 0.53 | — | n/a | — | — | n/a | — |
4 | 1.0443 | 1.046 | 0.16 | 2.1070 | 2.1023 | 0.22 | — | n/a | — | — | n/a | — |
5 | 19.5824 | 19.8553 | 1.37 | 38.7844 | 38.4228 | 0.94 | 61.0811 | 61.1145 | 0.05 | 44.8857 | 44.7614 | 0.28 |
6 | 19.0866 | 20.2543 | 5.77 | 39.2825 | 39.3569 | 0.19 | 53.1363 | 53.2478 | 0.21 | — | n/a | — |
7 | 29.5492 | 29.8581 | 1.03 | 57.8708 | 57.8313 | 0.07 | 89.1965 | 89.1199 | 0.09 | 62.8395 | 62.0981 | 1.19 |
8 | 1.1229 | 1.0273 | 9.31 | 2.0572 | 2.0366 | 1.01 | — | n/a | — | n/a | — | |
9 | 29.0097 | 29.5884 | 1.96 | 60.7996 | 59.1277 | 2.83 | 89.9903 | 90.0145 | 0.03 | 66.0446 | 66.2222 | 0.27 |
10 | 57.1489 | 57.7271 | 1.00 | 143.6671 | 145.8 | 1.46 | 61.4674 | 61.3628 | 0.17 | 48.3041 | 48.0616 | 0.05 |
11 | 5.1720 | 5.1520 | 0.39 | 10.4377 | 10.233 | 2.00 | — | n/a | — | — | n/a | — |
12 | 1.0336 | 1.0357 | 0.20 | 2.0800 | 2.0671 | 0.62 | — | n/a | — | — | n/a | — |
平均误差 | 3.07 | 平均误差 | 1.17 | 平均误差 | 0.52 | 平均误差 | 0.78 | |||||
燃烧爆炸影响范围/m | ||||||||||||
泄漏场景 | R37.5 | OP0.02 | OP0.13 | OP0.2 | ||||||||
拟合值 | PHAST | 误差/% | 拟合值 | PHAST | 误差/% | 拟合值 | PHAST | 误差/% | 拟合值 | PHAST | 误差/% | |
1 | — | n/a | — | — | n/a | — | — | n/a | — | — | n/a | — |
2 | — | n/a | — | 90.0796 | 81.8921 | 9.99 | 39.5597 | 40.0856 | 1.31 | 37.5773 | 37.5618 | 0.04 |
3 | — | n/a | — | 20.9559 | 23.0971 | 9.27 | 13.7665 | 12.5455 | 9.73 | 11.8891 | 11.9085 | 0.16 |
4 | — | n/a | — | — | n/a | — | — | n/a | — | — | n/a | — |
5 | 28.5267 | 28.5258 | 0.003 | 75.0891 | 81.9273 | 8.35 | 41.9645 | 40.0924 | 4.67 | 38.2347 | 37.5669 | 1.78 |
6 | — | n/a | — | 88.5139 | 81.7954 | 8.21 | 36.8960 | 40.0668 | 7.91 | 35.6545 | 37.5477 | 5.04 |
7 | — | n/a | — | 123.6380 | 127.488 | 3.20 | 59.4687 | 65.0603 | 8.59 | 56.1884 | 61.2916 | 8.33 |
8 | — | n/a | — | — | n/a | — | — | n/a | — | — | n/a | — |
9 | 49.1390 | 49.1393 | 0.001 | 140.9351 | 127.387 | | 61.8995 | 65.0406 | 4.83 | 56.0099 | 61.2769 | 8.60 |
10 | 38.8212 | 38.7396 | 0.21 | 262.4393 | 247.412 | 6.07 | 154.7719 | 158.366 | 2.27 | 150.585 | 153.77 | 2.07 |
11 | — | n/a | — | 21.9442 | 23.0989 | 4.99 | 13.7299 | 12.5459 | 9.44 | 11.5666 | 11.9088 | 2.87 |
12 | — | n/a | — | — | n/a | — | — | n/a | — | — | n/a | — |
平均误差 | 0.07 | 平均误差 | 7.59 | 平均误差 | 6.10 | 平均误差 | 3.61 |
8 | JIANG W W , YAN X Q . Application of PHAST software in accident consequence analysis of ethylene oxide tank area[J]. Safety Health & Environment, 2007, 7(5): 34-36. |
9 | 钟岸, 周荣义, 任竞舟, 等 . 环氧乙烷储罐泄漏扩散中毒模拟研究[J].中国安全生产科学技术, 2014, 10(12): 119-124. |
ZHONG A , ZHOU R Y , REN J Z , et al . Simulation of ethylene oxide tank leakage diffusion poisoning[J]. Science and Technology of Safe Production in China, 2014, 10(12): 119-124. | |
10 | GERBEC M , PONTIGGIA M , ANTONIONI G , et al . Comparison of UDM and CFD simulations of a time varying release of LPG in geometrical complex environment[J]. Journal of Loss Prevention in the Process Industries, 2017, 45(1): 56-68. |
11 | JENKINS C , KUSKE T , ZEGELIN S . Simple and effective atmospheric monitoring for CO2 leakage[J]. International Journal of Greenhouse Gas Control, 2016, 46: 158-174. |
12 | PALTRINIERI N , ØIEN K , COZZANI V . Assessment and comparison of two early warning indicator methods in the perspective of prevention of atypical accident scenarios[J]. Reliability Engineering and System Safety, 2012, 108: 21-31. |
13 | MIRATS-TUR J M , JARRIGE P A , MESEGUER J , et al . Leak detection and localization using models: field results[J]. Procedia Engineering, 2014, 70: 1157-1165. |
14 | MENG X K , CHEN G M , ZHU G G , et al . Dynamic quantitative risk assessment of accidents induced by leakage on offshore platforms using DEMATEL-BN[J]. International Journal of Naval Architecture and Ocean Engineering, 2019, 11: 22-32. |
15 | NA J , JEON K , LEE W B . Toxic gas release modeling for real-time analysis using variational autoencoder with convolutional neural networks[J]. Chemical Engineering Science, 2018, 181: 68-78. |
16 | 张会书, 袁希钢, KALBASSI M A . 规整填料内液体分布的实验研究进展[J]. 化工进展, 2015, 34(8) : 2932-2939. |
ZHANG H S , YUAN X G , KALBASSI M A . Advances in experimental studies on liquid distribution in structured packing[J]. Chemical Industry and Engineering Progress, 2015, 34(8): 2932-2939. | |
17 | 牛颐宁 . 环氧乙烷反应器泄漏原因分析与处理[J].石油化工技术与经济, 2011, 27(4): 29-32. |
1 | 张泽武 . 环氧乙烷贮罐安全设施设计要点及工艺流程范式[J]. 上海化工, 2018, 43(11): 30-34. |
ZHANG Z W . Design essentials and process flow paradigm of safety facilities for ethylene oxide tank[J]. Shanghai Chemical Industry, 2018, 43(11): 30-34. | |
17 | NIU Y N . Cause analysis and treatment of ethylene oxide reactor leakage[J]. Technology & Economics in Petrochemicals, 2011, 27(4): 29-32. |
18 | 朱伯龄, 於孝春 . LNG储罐孔洞泄漏扩散危险区域分析[J]. 安全与环境工程, 2009, 16(3): 104-108. |
ZHU B L , YU X C . Analysis of dangerous area of LNG storage tank hole leakage and diffusion[J]. Safety and Environment Engineering, 2009, 16(3): 104-108. | |
19 | WANG Y P , ZHANG R B , ZHANG Z , et al . Leakage risk quantitative calculation model and its application for anaerobic reactor[J] Journal of the Taiwan Institute of Chemical Engineers, 2017, 77: 152-160. |
20 | NAEMNEZHAD A , ISARI A A , KHAYER E , et al . Consequence assessment of separator explosion for an oil production platform in South of Iran with PHAST Software[J]. Modeling Earth Systems & Environment, 2017, 3(1): 43-45. |
21 | 唐建峰, 蔡娜, 郭清, 等 . 液化天然气水平连续泄漏重气的扩散过程[J].化工进展, 2012, 31(9): 1908-1913. |
TANG J F , CAI N , GUO Q , et al . The diffusion process of heavy gas from horizontal leakage of liquefied natural gas[J]. Chemical Industry and Engineering Progress, 2012, 31(9): 1908-1913. | |
22 | PAN X H , HUA M , JIANG J C . Simulation research on the influence of environmental condition on LNG leakage and dispersion[J]. Natural Gas Industry, 2009, 29(1): 117-119. |
23 | 伍全红, 唐杰 . 危险化学品气体输送管线泄漏事故后果分析[J].石化技术, 2018, 25(11): 233. |
WU Q H , TANG J . Analysis of the consequences of leakage accident in gas transmission pipeline of hazardous chemicals[J]. Petrochemical Industry Technology, 2018, 25(11): 233. | |
24 | WANG K , LIUZ, QIAN X , et al . Comparative study on blast wave propagation of natural gas vapor cloud explosions in open space based on a full-scale experiment and PHAST[J]. Energy & Fuels, 2016, 30(7): 6143-6148. |
25 | 李胜, 李军文, 程瞳, 等 . 基于Matlab曲线拟合的两带高度计算公式优化[J]. 科技导报, 2013, 31(3): 63-66. |
LI S , LI J W , CHENG T , et al . Optimization of two-band height calculation formula based on Matlab curve fitting[J]. Science & Technology Review, 2013, 31(3): 63-66. | |
26 | 国家安全生产监督管理总局 . 化工企业定量风险评价导则: AQ/T 3046—2013 [S]. 2013. |
State Administration of Work Safety . Guidelines for quantitative risk assessment of chemical enterprises: AQ/T 3046—2013[S]. 2013. | |
27 | OOSTERHOF N N , CONNOLLY A C , HAXBY J V . CoSMoMVPA: multi-modal multivariate pattern analysis of neuroimaging data in Matlab/GNU octave[J]. Frontiers in Neuroinformatics, 2016, 10(14): 27-28. |
2 | 柳伟, 潘旭海 . 基于风险分析的性能化安全设计方法研究[J]. 化工进展, 2016, 35(s2): 103-109. |
LIU W , PAN X H . Study on performance-based safety design method based on risk analysis[J]. Chemical Industry and Engineering Progress, 2016, 35(s2): 103-109. | |
3 | 高炜, 张礼敬, 陶刚 .大气环境对天然气管道泄漏扩散影响的模拟[J]. 化工进展, 2016, 35(s1): 311-315. |
GAO W , ZHANG L J , TAO G . Simulation of the influence of atmospheric environment on the leakage and diffusion of natural gas pipeline[J]. Chemical Industry and Engineering Progress, 2016, 35(s1): 311-315. | |
4 | GANT S E , NARASIMHAMURTHY V D , SKJOLD T , et al . Evaluation of multi-phase atmospheric dispersion models for application to Carbon Capture and Storage[J]. Journal of Loss Prevention in the Process Industries, 2014, 32(1): 286-298. |
5 | 郭保建 . 定量风险分析(QRA)技术在环氧乙烷储罐安全评价中的应用[J]. 无机盐工业, 2016, 48(8): 63-66. |
GUO B J . Application of quantitative risk analysis (QRA) technique in safety evaluation of ethylene oxide tank[J]. Inorganic Chemicals Industry, 2016, 48(8): 63-66. | |
6 | 相艳景, 刘茂, 张永强, 等 . ALOHA软件模拟分析环氧乙烷储罐泄漏事故[J].中国公共安全(学术版), 2008(s1): 49-53. |
XIANG Y J , LIU M , ZHANG Y Q , et al . ALOHA software simulates and analyzes the ethylene oxide tank leakage accident[J]. China Public Security (Academy Edition), 2008(s1) :49-53. | |
7 | SHAO H , DUAN G . Risk quantitative calculation and ALOHA simulation on the leakage accident of natural gas power plant[J]. Procedia Engineering, 2012, 45: 352-359. |
8 | 姜巍巍, 阎晓青 . PHAST软件在环氧乙烷罐区事故后果分析中的应用[J]. 安全、健康和环境, 2007, 7(5): 34-36. |
[1] | 王文昊, 何立东, 王学志, 闫泽, 贾兴运, 刘春瑞. 偏心工况下梳齿、蜂窝与蜂窝-梳齿密封的泄漏特性[J]. 化工进展, 2023, 42(4): 1698-1707. |
[2] | 闫兴清, 戴行涛, 喻健良, 李岳, 韩冰, 胡军. 高压氢气泄漏射流研究进展[J]. 化工进展, 2023, 42(3): 1118-1128. |
[3] | 于涵, 王宏, 朱恂, 丁玉栋, 陈蓉, 廖强. 静电喷雾沉积半径的预测模型[J]. 化工进展, 2022, 41(6): 2864-2870. |
[4] | 梁倩卿, 卜亿峰, 门卓武, 马学虎. 蛇形微通道内泄漏流特性[J]. 化工进展, 2021, 40(11): 5973-5980. |
[5] | 褚俊杰, 常洁, 罗志斌, 侯明明, 李谦. 环氧乙烷吸收和转化合成碳酸酯工艺研究进展[J]. 化工进展, 2021, 40(1): 195-204. |
[6] | 裴海华, 刘冬鑫, 张贵才, 单景玲, 蒋平. 塔河超稠油掺苯乙烯焦油降黏实验及黏度预测模型[J]. 化工进展, 2020, 39(S2): 135-141. |
[7] | 郑烨, 李建波, 张锴, 关彦军, 杨凤玲, 程芳琴. 酸性氧化物和酸碱比对煤灰熔融行为的影响[J]. 化工进展, 2020, 39(9): 3617-3625. |
[8] | 闵健, 腾东玉, 王云, 陈达. 密封点挥发性有机物(VOCs)排放速率的数值模拟及实测应用[J]. 化工进展, 2020, 39(7): 2599-2605. |
[9] | 陶政宇,付刚,闻建平,张大伟. 肌酐酶在枯草芽孢杆菌中的异源表达及分泌机制[J]. 化工进展, 2020, 39(4): 1458-1468. |
[10] | 黄建松,许松林. 制取无水叔丁醇的精馏工艺优化和对比[J]. 化工进展, 2019, 38(11): 5181-5188. |
[11] | 周宁,陈力,吕孝飞,李雪,黄维秋,赵会军,刘晅亚,陈兵. 大型LNG储罐连续泄漏扩散过程影响因素的分析[J]. 化工进展, 2019, 38(10): 4423-4436. |
[12] | 赵诗琳, 孟范平, 林雨霏, 郑洋, 王国善, 武江越. 二甲苯吸附剂及其在泄漏事故水域的适用性评述[J]. 化工进展, 2019, 38(06): 2813-2824. |
[13] | 郝庆芳,黄维秋,景海波,李飞,方洁,纪虹,凌祥,吕爱华. 外浮顶罐不同孔隙油气泄漏扩散数值模拟[J]. 化工进展, 2019, 38(03): 1226-1235. |
[14] | 顾帅威, 李玉星, 滕霖, 王财林, 胡其会, 张大同, 叶晓, 王婧涵. 小尺度超临界CO2管道小孔泄漏减压及温降特性[J]. 化工进展, 2019, 38(02): 805-812. |
[15] | 田俊杰, 王越, 吴家能, 周杰, 徐世昌. 静压支承技术在海水淡化旋转式能量回收装置中的应用[J]. 化工进展, 2019, 38(02): 798-804. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |