化工进展 ›› 2019, Vol. 38 ›› Issue (06): 2813-2824.DOI: 10.16085/j.issn.1000-6613.2018-1880
赵诗琳1(),孟范平1(),林雨霏2,郑洋2,王国善2,武江越2
收稿日期:
2018-09-18
出版日期:
2019-06-05
发布日期:
2019-06-05
通讯作者:
孟范平
作者简介:
赵诗琳(1994—),女,硕士研究生,研究方向为海洋环境生态学。E-mail:<email>shilin.xingmu@qq.com</email>。
基金资助:
Shilin ZHAO1(),Fanping MENG1(),Yufei LIN2,Yang ZHENG2,Guoshan WANG2,Jiangyue WU2
Received:
2018-09-18
Online:
2019-06-05
Published:
2019-06-05
Contact:
Fanping MENG
摘要:
二甲苯是泄漏事故频率较高的一种典型危险化学品。在化学品泄漏响应中,吸附材料可以作为一种资源用于水中化学品的回收。为了选择一种优秀的吸附材料清除水面泄漏二甲苯,本文在介绍5类吸附剂(矿物类、生物质、纳米材料、有机合成化合物和超疏水材料)的结构特点、吸附原理、吸附性能基础上,评述了各类吸附剂应用于泄漏事故水域二甲苯分离去除的优缺点,介绍了各类材料吸附分离二甲苯的最新进展。分析表明,超疏水三维多孔材料(超疏水海绵、超疏水纤维等)和超疏水网膜材料由于具有较高的亲油疏水性和二甲苯吸附容量,且机械强度大、耐磨性强、再生方法简单,使其适于作为大面积二甲苯污染水域的分离材料。本文对改进超疏水材料应用效果提出了建议。
中图分类号:
赵诗琳, 孟范平, 林雨霏, 郑洋, 王国善, 武江越. 二甲苯吸附剂及其在泄漏事故水域的适用性评述[J]. 化工进展, 2019, 38(06): 2813-2824.
Shilin ZHAO, Fanping MENG, Yufei LIN, Yang ZHENG, Guoshan WANG, Jiangyue WU. Sorbents for seprating xylene and their applicability in waters after the accidental spills: a review[J]. Chemical Industry and Engineering Progress, 2019, 38(06): 2813-2824.
吸附剂 | 改性方法 | S BET /m2·g-1 | 吸附质 | 温度/℃ | pH | 平衡吸附容量 /mg·g-1 | 吸附等温线模型 | 吸附 动力学模型 | 文献 |
---|---|---|---|---|---|---|---|---|---|
硅藻土(采自希腊北部的库扎尼地区) | 未处理 | 38.4 | PX、OX | 20 | — | 0.34、0.20 | Freundlich | 拟二级 | [ |
550℃煅烧 | 43.3 | PX、OX | 20 | — | 0.82、0.64 | Freundlich | 拟二级 | [ | |
750℃煅烧 | 31.81 | PX、OX | 20 | — | 0.75、0.50 | Freundlich | 拟二级 | [ | |
950℃煅烧 | 7.66 | PX、OX | 20 | — | 0.42、0.23 | Freundlich | 拟二级 | [ | |
硅藻土(西班牙一种商品化产品) | 未处理 | 13.04 | MX、PX、OX | 20 | — | 0.10、0.10、0.04 | Freundlich | — | [ |
550℃煅烧 | 10.1 | MX、PX、OX | 20 | — | 0.15、0.15、0.08 | Freundlich | — | [ | |
DHCl | 9.4 | MX、PX、OX | 20 | — | 0.19、0.19、0.08 | Freundlich | — | [ | |
粉煤灰制成的Na-P1沸石 | 不改性 | 75.59 | PX、OX | 20 | — | 0.097、0.082 | Langmuir | 拟二级 | [ |
粉煤灰制成的Na-P1沸石 | 不改性 | 88 | PX | 20 | — | 1.81~11.41 | — | — | [ |
HDTMA-Br | — | PX | 20 | — | 1.79~11.47 | — | — | [ | |
天然斜发沸石 | HDTMA-Cl | — | 二甲苯 | 20 | — | 0.134 | — | 拟二级 | [ |
CPB | — | 二甲苯 | 20 | — | 0.255 | — | 拟二级 | [ | |
沸石纳米颗粒 | HDTMA-Cl | — | 二甲苯 | 20 | — | 0.624 | — | 拟二级 | [ |
CPB | — | 二甲苯 | 20 | — | 0.662 | — | 拟二级 | [ | |
蒙脱石 | PEG | 27.8 | 二甲苯 | 25 | 7.0 | 6.00 | Freundlich | 拟二级 | [ |
蒙脱石 | TTAB | 26.2 | 二甲苯 | — | 7.0 | 6.98 | Freundlich | 拟二级 | [ |
蒙脱石 | HDTMA-Cl | 61.66 | MX、PX | 23 | 9.0 | 0.76、0.75 | Langmuir-Freundlich | — | [ |
表1 矿物类吸附剂对水中二甲苯的吸附特征一览表
吸附剂 | 改性方法 | S BET /m2·g-1 | 吸附质 | 温度/℃ | pH | 平衡吸附容量 /mg·g-1 | 吸附等温线模型 | 吸附 动力学模型 | 文献 |
---|---|---|---|---|---|---|---|---|---|
硅藻土(采自希腊北部的库扎尼地区) | 未处理 | 38.4 | PX、OX | 20 | — | 0.34、0.20 | Freundlich | 拟二级 | [ |
550℃煅烧 | 43.3 | PX、OX | 20 | — | 0.82、0.64 | Freundlich | 拟二级 | [ | |
750℃煅烧 | 31.81 | PX、OX | 20 | — | 0.75、0.50 | Freundlich | 拟二级 | [ | |
950℃煅烧 | 7.66 | PX、OX | 20 | — | 0.42、0.23 | Freundlich | 拟二级 | [ | |
硅藻土(西班牙一种商品化产品) | 未处理 | 13.04 | MX、PX、OX | 20 | — | 0.10、0.10、0.04 | Freundlich | — | [ |
550℃煅烧 | 10.1 | MX、PX、OX | 20 | — | 0.15、0.15、0.08 | Freundlich | — | [ | |
DHCl | 9.4 | MX、PX、OX | 20 | — | 0.19、0.19、0.08 | Freundlich | — | [ | |
粉煤灰制成的Na-P1沸石 | 不改性 | 75.59 | PX、OX | 20 | — | 0.097、0.082 | Langmuir | 拟二级 | [ |
粉煤灰制成的Na-P1沸石 | 不改性 | 88 | PX | 20 | — | 1.81~11.41 | — | — | [ |
HDTMA-Br | — | PX | 20 | — | 1.79~11.47 | — | — | [ | |
天然斜发沸石 | HDTMA-Cl | — | 二甲苯 | 20 | — | 0.134 | — | 拟二级 | [ |
CPB | — | 二甲苯 | 20 | — | 0.255 | — | 拟二级 | [ | |
沸石纳米颗粒 | HDTMA-Cl | — | 二甲苯 | 20 | — | 0.624 | — | 拟二级 | [ |
CPB | — | 二甲苯 | 20 | — | 0.662 | — | 拟二级 | [ | |
蒙脱石 | PEG | 27.8 | 二甲苯 | 25 | 7.0 | 6.00 | Freundlich | 拟二级 | [ |
蒙脱石 | TTAB | 26.2 | 二甲苯 | — | 7.0 | 6.98 | Freundlich | 拟二级 | [ |
蒙脱石 | HDTMA-Cl | 61.66 | MX、PX | 23 | 9.0 | 0.76、0.75 | Langmuir-Freundlich | — | [ |
吸附剂 | 改性剂或方法 | S BET /m2·g-1 | 吸附物质 | 温度/℃ | 平衡吸附容量/g·g-1 | 吸附等温线 | 吸附动力学 | 文献 |
---|---|---|---|---|---|---|---|---|
木棉纤维 | 不改性 | — | 二甲苯 | 20 | 29.2 | — | — | [ |
NaClO2 | — | 二甲苯 | 20 | 36.2 | — | — | ||
红麻芯 | MTMS | 9.13 | 二甲苯 | — | 19.6 | — | — | [ |
泥炭 | — | — | MX,PX | 25 | 11.23×10-6 | Freundlich | 拟二级 | [ |
OX | 25 | 9.72×10-6 | Freundlich | 拟二级 | ||||
木屑 | — | — | MX,PXOX | 25 | 9.07×10-6 | Freundlich | 拟二级 | [ |
25 | 6.45×10-6 | Freundlich | 拟二级 | |||||
KC-8活性炭 | — | 769.39 | PX | 40 | 0.235 | Freundlich | 拟二级 | [ |
文冠果壳活性炭 | — | 1455.23 | 二甲苯 | — | 1.878 | — | 拟二级 | [ |
表2 生物质吸附剂对水中二甲苯的吸附特征一览表
吸附剂 | 改性剂或方法 | S BET /m2·g-1 | 吸附物质 | 温度/℃ | 平衡吸附容量/g·g-1 | 吸附等温线 | 吸附动力学 | 文献 |
---|---|---|---|---|---|---|---|---|
木棉纤维 | 不改性 | — | 二甲苯 | 20 | 29.2 | — | — | [ |
NaClO2 | — | 二甲苯 | 20 | 36.2 | — | — | ||
红麻芯 | MTMS | 9.13 | 二甲苯 | — | 19.6 | — | — | [ |
泥炭 | — | — | MX,PX | 25 | 11.23×10-6 | Freundlich | 拟二级 | [ |
OX | 25 | 9.72×10-6 | Freundlich | 拟二级 | ||||
木屑 | — | — | MX,PXOX | 25 | 9.07×10-6 | Freundlich | 拟二级 | [ |
25 | 6.45×10-6 | Freundlich | 拟二级 | |||||
KC-8活性炭 | — | 769.39 | PX | 40 | 0.235 | Freundlich | 拟二级 | [ |
文冠果壳活性炭 | — | 1455.23 | 二甲苯 | — | 1.878 | — | 拟二级 | [ |
纳米材料 | 改性方法 | S BET /m2·g-1 | 孔径/nm | 吸附质 | q m/mg·g-1 | 温度/℃ | pH | 吸附等温模型 | 吸附 动力学模型 | 文献 |
---|---|---|---|---|---|---|---|---|---|---|
多壁碳纳米管 | 无 | 471 | 5.4 | PX、MX、OX | 76.15、76.86、61.86 | 20 | 7.0 | Langmuir | — | [ |
3%NaOCl氧化 | 381 | 6 | PX、MX、OX | 56.17、112.19、75.27 | 20 | 7.0 | Langmuir | — | ||
15%NaOCl氧化 | 327 | 5.9 | PX、MX、OX | 44.60、48.58、44.42 | 20 | 7.0 | Langmuir | — | ||
30%NaOCl氧化 | 382 | 6 | PX、MX、OX | 103.40、109.78、97.39 | 20 | 7.0 | Langmuir | — | ||
多壁碳纳米管 | 无 | 310.75 | 0.25 | PX | 172.68 | 25 | 7.0 | Langmuir | — | [ |
30%NaOCl氧化 | 88.56 | 0.27 | PX | 413.77 | 25 | 7.0 | Langmuir | — | ||
多壁碳纳米管 | 无 | 310.75/231.89① | 0.25/23.54① | PX | 147.8 | 25 | 7.0 | — | — | [ |
NaOCl活化 | 133.33/194.08① | 0.30/23.75① | PX | 318.3 | 25 | 7.0 | — | — | ||
多壁碳纳米管 | 无 | 138 | 16.7 | PX | 219.51 | 25 | 6.0 | Langmuir- Freundlich | 拟二级 | [ |
氧化铁纳米颗粒浸渍 | 216 | 18.5 | PX | 458.52 | 25 | 6.0 | 拟二级 | |||
多壁碳纳米管 | 无 | 113.5 | 11.03 | PX、MX、OX | 44.15、70.58、44.18 | 20 | 6.0 | Langmuir | 拟二级 | [ |
KOH活化 | 662.1 | 2.26 | PX、MX、OX | 105.59、227.05、138.04 | 20 | 6.0 | Langmuir | 拟二级 | ||
多壁碳纳米管 | KOH活化 | 534.6 | — | MX | 247.83 | 20 | 6.0 | Langmuir | 拟二级 | [ |
表3 纳米材料对水中二甲苯的吸附特征一览表
纳米材料 | 改性方法 | S BET /m2·g-1 | 孔径/nm | 吸附质 | q m/mg·g-1 | 温度/℃ | pH | 吸附等温模型 | 吸附 动力学模型 | 文献 |
---|---|---|---|---|---|---|---|---|---|---|
多壁碳纳米管 | 无 | 471 | 5.4 | PX、MX、OX | 76.15、76.86、61.86 | 20 | 7.0 | Langmuir | — | [ |
3%NaOCl氧化 | 381 | 6 | PX、MX、OX | 56.17、112.19、75.27 | 20 | 7.0 | Langmuir | — | ||
15%NaOCl氧化 | 327 | 5.9 | PX、MX、OX | 44.60、48.58、44.42 | 20 | 7.0 | Langmuir | — | ||
30%NaOCl氧化 | 382 | 6 | PX、MX、OX | 103.40、109.78、97.39 | 20 | 7.0 | Langmuir | — | ||
多壁碳纳米管 | 无 | 310.75 | 0.25 | PX | 172.68 | 25 | 7.0 | Langmuir | — | [ |
30%NaOCl氧化 | 88.56 | 0.27 | PX | 413.77 | 25 | 7.0 | Langmuir | — | ||
多壁碳纳米管 | 无 | 310.75/231.89① | 0.25/23.54① | PX | 147.8 | 25 | 7.0 | — | — | [ |
NaOCl活化 | 133.33/194.08① | 0.30/23.75① | PX | 318.3 | 25 | 7.0 | — | — | ||
多壁碳纳米管 | 无 | 138 | 16.7 | PX | 219.51 | 25 | 6.0 | Langmuir- Freundlich | 拟二级 | [ |
氧化铁纳米颗粒浸渍 | 216 | 18.5 | PX | 458.52 | 25 | 6.0 | 拟二级 | |||
多壁碳纳米管 | 无 | 113.5 | 11.03 | PX、MX、OX | 44.15、70.58、44.18 | 20 | 6.0 | Langmuir | 拟二级 | [ |
KOH活化 | 662.1 | 2.26 | PX、MX、OX | 105.59、227.05、138.04 | 20 | 6.0 | Langmuir | 拟二级 | ||
多壁碳纳米管 | KOH活化 | 534.6 | — | MX | 247.83 | 20 | 6.0 | Langmuir | 拟二级 | [ |
吸附剂 | 吸附质 | 温度/℃ | 吸油倍率 /g·g-1 | 吸附等温线 模型 | 吸附动力学模型 | (吸附/解吸 时间)/min | 重复利用 次数 | 文献 |
---|---|---|---|---|---|---|---|---|
聚丙烯纤维(PP) | 二甲苯 二甲苯 | 25 25 | 10.9 115.45mg·g-1① | — | — | —/— —/— | — — | [ |
苯乙烯接枝的聚丙烯纤维(PP-g-St) | 二甲苯 二甲苯 | 25 25 | 13.4 513.26mg·g-1① | — | — | —/— —/— | 6次,>90% 初始值 | [ |
丙烯酸甲酯接枝的聚丙烯纤维 (PP-g-MA) | OX、PX | 20 | 21.05、11.32 | — | — | —/— | 10次,>85%初始值 | [ |
丙烯酸丁酯接枝的聚丙烯纤维(PP-g-BA) | OX、PX | 20 | 15.67、15.24 | —/— | 10次,>85%初始值 | |||
聚(甲基丙烯酸甲酯-丙烯酸丁酯)/ATP- Fe3O4磁性复合树脂 | 二甲苯 | 室温 | 23.8 | — | 拟一级 | 420/— | — | [ |
聚丙烯酸-2-乙基己酯树脂(B-PEHA) | 二甲苯 | — | 18.78 | — | — | 50/— | — | [ |
芳香烷氧基硅烷的杂化有机凝胶 | 二甲苯 | — | 3.42 | — | — | 60/40(室温、 空气) | 10次以上 | [ |
丙醇甘油酯与三[3-(三甲氧基硅基)丙基] 异氰尿酸酯(ICS)聚合成的凝胶(GP1500-ICS) | 二甲苯 | — | 4.31 | — | — | 100/50~60 (室温、空气) | 10次以上 | [ |
周期性介孔有机硅(PMO) | PX、OX | 28 | 6.085mg·g-1 6.349mg·g-1② | Langmuir和Redlich-Peterson | 拟一级 | 40/— 60/— | — — | [ |
表4 有机合成吸附剂对水中二甲苯的吸附特征一览表
吸附剂 | 吸附质 | 温度/℃ | 吸油倍率 /g·g-1 | 吸附等温线 模型 | 吸附动力学模型 | (吸附/解吸 时间)/min | 重复利用 次数 | 文献 |
---|---|---|---|---|---|---|---|---|
聚丙烯纤维(PP) | 二甲苯 二甲苯 | 25 25 | 10.9 115.45mg·g-1① | — | — | —/— —/— | — — | [ |
苯乙烯接枝的聚丙烯纤维(PP-g-St) | 二甲苯 二甲苯 | 25 25 | 13.4 513.26mg·g-1① | — | — | —/— —/— | 6次,>90% 初始值 | [ |
丙烯酸甲酯接枝的聚丙烯纤维 (PP-g-MA) | OX、PX | 20 | 21.05、11.32 | — | — | —/— | 10次,>85%初始值 | [ |
丙烯酸丁酯接枝的聚丙烯纤维(PP-g-BA) | OX、PX | 20 | 15.67、15.24 | —/— | 10次,>85%初始值 | |||
聚(甲基丙烯酸甲酯-丙烯酸丁酯)/ATP- Fe3O4磁性复合树脂 | 二甲苯 | 室温 | 23.8 | — | 拟一级 | 420/— | — | [ |
聚丙烯酸-2-乙基己酯树脂(B-PEHA) | 二甲苯 | — | 18.78 | — | — | 50/— | — | [ |
芳香烷氧基硅烷的杂化有机凝胶 | 二甲苯 | — | 3.42 | — | — | 60/40(室温、 空气) | 10次以上 | [ |
丙醇甘油酯与三[3-(三甲氧基硅基)丙基] 异氰尿酸酯(ICS)聚合成的凝胶(GP1500-ICS) | 二甲苯 | — | 4.31 | — | — | 100/50~60 (室温、空气) | 10次以上 | [ |
周期性介孔有机硅(PMO) | PX、OX | 28 | 6.085mg·g-1 6.349mg·g-1② | Langmuir和Redlich-Peterson | 拟一级 | 40/— 60/— | — — | [ |
吸附材料名称 | 基体 | 改性剂或方法 | 水接触角/(°) | 吸附质 | 吸附能力 | 重复利用性 | 文献 |
---|---|---|---|---|---|---|---|
超疏水亲油性 丝素纤维 | 丝素纤维 (蚕茧去除黏胶丝胶蛋白得到) | 十八烷基胺 | 150 | 二甲苯 | 55.24 g·g-1 | 5次循环后吸附能力 保持为初始值的93% | [ |
超疏水海绵 | 聚氨酯海绵 | 疏水性二氧化硅纳米颗粒 和聚氟硼烷(PFW) | 156 | 二甲苯 | — | 400次压缩实验后,超疏水性 和弹性保持不变 | [ |
弹性超疏水二氧化硅气凝胶 | 甲基三甲氧基硅烷(MTMS) | 两步溶胶-凝胶法 | >150 | 二甲苯 | 20.37 g·g-1 | — | [ |
疏水性二氧化硅气凝胶 | 甲基三甲氧基硅烷(MTMS) | 溶胶-凝胶法 | 173 | 二甲苯 | 2.54 g·g-1 | — | [ |
PVDF/Si-R杂化中空纤维膜 | 聚偏二氟乙烯(PVDF)、 疏水二氧化硅溶胶 | 喷湿纺丝工艺 | 126 | 二甲苯 | 82.3%① | — | [ |
表5 几种超疏水超亲油材料吸附分离二甲苯的特征
吸附材料名称 | 基体 | 改性剂或方法 | 水接触角/(°) | 吸附质 | 吸附能力 | 重复利用性 | 文献 |
---|---|---|---|---|---|---|---|
超疏水亲油性 丝素纤维 | 丝素纤维 (蚕茧去除黏胶丝胶蛋白得到) | 十八烷基胺 | 150 | 二甲苯 | 55.24 g·g-1 | 5次循环后吸附能力 保持为初始值的93% | [ |
超疏水海绵 | 聚氨酯海绵 | 疏水性二氧化硅纳米颗粒 和聚氟硼烷(PFW) | 156 | 二甲苯 | — | 400次压缩实验后,超疏水性 和弹性保持不变 | [ |
弹性超疏水二氧化硅气凝胶 | 甲基三甲氧基硅烷(MTMS) | 两步溶胶-凝胶法 | >150 | 二甲苯 | 20.37 g·g-1 | — | [ |
疏水性二氧化硅气凝胶 | 甲基三甲氧基硅烷(MTMS) | 溶胶-凝胶法 | 173 | 二甲苯 | 2.54 g·g-1 | — | [ |
PVDF/Si-R杂化中空纤维膜 | 聚偏二氟乙烯(PVDF)、 疏水二氧化硅溶胶 | 喷湿纺丝工艺 | 126 | 二甲苯 | 82.3%① | — | [ |
1 | 隆众石化数据库 . 二甲苯进出口数据[EB/OL]. [2018-09-05] . |
Oilchem . Import and export of xylene[EB/OL]. [2018-09-05] . | |
2 | 李春柱 . 国外事故案例[J]. 安全、健康和环境, 2002 (12): 33. |
LI C Z . Foreign accident cases[J]. Safety Health & Environment, 2002(12): 33. | |
3 | 谭林 . 深汕高速11吨二甲苯泄漏4人中毒[N]. 南方都市报, 2007-06-23. |
TAN L . 11 Tons of xylene leaks from the Shenzhen-Shantou Expressway, 4 people were poisoned[N]. Southern Metropolis Daily, 2007-06-23. | |
4 | 中国化学品安全协会 . 二甲苯[EB/OL]. 2007 [2018-09-05]. . |
China Chemical Safety Association . Xylene[EB/OL]. 2007[2018-09-05]. . | |
5 | DUAN W Y , MENG F P , WANG F F , et al . Environmental behavior and eco-toxicity of xylene in aquatic environments: a review[J]. Ecotoxicology and Environmental Safety, 2017, 145: 324-332. |
6 | AGREEMENT B . Bonn agreement: counter-pollution manual[M]. UK, London, Bonn Agreement Secretariat, 1994: 112-116. |
7 | ALBERT E . Revised GESAMP hazard evaluation procedure for chemical substances carried by ships[M]. International Maritime Organization. 2nd edition. UK: Polestar Wheatons Ltd., 2013: 21-61. |
8 | Helsinki Commission Baltic Marine Environment Protection Commission . HELCOM manual on co-operation in response to marine pollution within the framework of the convention on the protection of the marine environment of the baltic sea area[R]. Finland: Helsinki Convention, 2002: 50-60. |
9 | 张鹤清, 胡洪营, 席劲瑛 . 6种挥发性有机物在甲苯驯化微生物中的好氧生物降解性能[J]. 环境科学, 2003 (6): 83-89. |
ZHANG H Q , HU H Y , XI J Y . Aerobic biodegradation performance of six volatile organic compounds by activated sludge acclimated with toluene[J]. Environmental Science, 2003 (6): 83-89. | |
10 | 陈佩, 颜家保, 武文丽,等 . 邻二甲苯高效降解菌的分离及其降解特性[J]. 化工进展, 2016, 35(2): 565-569. |
CHEN P , YAN J B , WU W L , et al . Separation and biodegradation characteristics of a o-xylene degrading strain[J]. Chemical Industry and Engineering Progress, 2016, 35(2): 565-569. | |
11 | 罗洁 . 超疏水-超亲油泡沫铜的制备及油水分离研究[D]. 大连: 大连理工大学, 2016. |
LUO J . Fabrication of superhydrophobic-superoleophilic Cu foam and research on oil/water separation[D]. Dalian: Dalian University of Technology, 2016. | |
12 | WEEBER J L , BOWMAN R S , KATZ L E , et al . BTEX removal from produced water using surfactant-modified zeolite[J]. Journal of Environmental Engineering, 2005, 131(3): 434-442. |
13 | SIMPSON J A , BOWMAN R S . Nonequilibrium sorption and transport of volatile petroleum hydrocarbons in surfactant-modified zeolite[J]. Journal of Contaminant Hydrology, 2009, 108(1): 1-11. |
14 | 郭承义 . 内河水上搜救行动中化学品船突发事故的应急处置[J]. 中国水运, 2011 (3): 24-25. |
GUO C Y . Emergency handling of chemical ship accidents in inland water search and rescue operations[J]. China Water Transport, 2011 (3): 24-25. | |
15 | TIC W J, PIJAROWSKI P M . Characteristics of adsorbents used to remove petroleum contaminants from soil and wastewater[J]. Przemysl Chemiczny, 2015, 94(3): 301-306. |
16 | BANDURA L , WOSZUK A , KOŁODYŃSKA D , et al . Application of mineral sorbents for removal of petroleum substances: a review[J]. Minerals, 2017, 7(3): 37-61. |
17 | BOWMAN R S . Applications of surfactant-modified zeolites to environmental remediation[J]. Microporous & Mesoporous Materials, 2003, 61(1): 43-56. |
18 | AL-GHOUTI M , KHRAISHEH M A M , AHMAD M N M , et al . Thermodynamic behaviour and the effect of temperature on the removal of dyes from aqueous solution using modified diatomite: a kinetic study[J]. Journal of Colloid & Interface Science, 2005, 287(1): 6-13. |
19 | AIVALIOTI M , VAMVASAKIS I , GIDARAKOS E . BTEX and MTBE adsorption onto raw and thermally modified diatomite[J]. Journal of Hazardous Materials, 2010, 178(1/2/3): 136-143. |
20 | AIVALIOTI M , PAPOULIAS P , KOUSAITI A , et al . Adsorption of BTEX, MTBE and TAME on natural and modified diatomite[J]. Journal of Hazardous Materials, 2012, 207/208: 117-127. |
21 | BANDURA L , KOŁODYŃSKA D , FRANUS W . Adsorption of BTX from aqueous solutions by Na-P1 zeolite obtained from fly ash[J]. Process Safety & Environmental Protection, 2017, 109: 214-223. |
22 | SZALA B , BAJDA T , MATUSIK J , et al . BTX sorption on Na-P1 organo-zeolite as a process controlled by the amount of adsorbed HDTMA[J]. Microporous & Mesoporous Materials, 2015, 202: 115-123. |
23 | SEIFI L , TORABIAN A , KAZEMIAN H , et al . Kinetic study of BTEX removal using granulated surfactant-modified natural zeolites nanoparticles[J]. Water Air & Soil Pollution, 2011, 219(1/2/3/4): 443-457. |
24 | NOURMORADI H , NIKAEEN M , KHIADANI M . Removal of benzene, toluene, ethylbenzene and xylene (BTEX) from aqueous solutions by montmorillonite modified with nonionic surfactant: equilibrium, kinetic and thermodynamic study[J]. Chemical Engineering Journal, 2012, 191(19): 341-348. |
25 | NOURMORADI H , KHIADANI M , NIKAEEN M . Multi-component adsorption of benzene, toluene, ethylbenzene, and xylene from aqueous solutions by montmorillonite modified with tetradecyl trimethyl ammonium bromide[J]. Journal of Chemistry, 2013, 2013(1/2/3/4): 89-94. |
26 | CARVALHO M N , DA M M, BENACHOUR M , et al . Evaluation of BTEX and phenol removal from aqueous solution by multisolute adsorption onto smectite organoclay[J]. Journal of Hazardous Materials, 2012, 239/240(18): 95-101. |
27 | MERLIN F X , LE GUERROUÉ P . Use of sorbents for spill response[M]//Centre of Documentation, Research and Experimentation on accidental water pollution(CEDRE). France: CEDRE, 2009: 27. |
28 | ITOPF (The International Tanker Owners Pollution Federation Limited) . Technical information peper 8: use of sorbent materials in oil spill response[M]. London: ITOPF Ltd., 2011: 1-11. |
29 | SALIU O D , OLATUNJI G A , YAKUBU A , et al . Catalytic crosslinking of a regenerated hydrophobic benzylated cellulose and nano TiO2 composite for enhanced oil absorbency[J]. e-Polymers, 2017, 17(4): 295-302. |
30 | WANG J , ZHENG Y , WANG A . Effect of kapok fiber treated with various solvents on oil absorbency[J]. Industrial Crops & Products, 2012, 40(3): 178-184. |
31 | 刘晓东, 蔡伟杰, 于辛瑶, 等 . 红麻芯基多孔吸油材料的制备及性能[J]. 精细化工, 2018, 35(5): 740-745, 763. |
LIU X D , CAI W J , YU X Y , et al . Preparation and properties of kenaf core-based porous oil-absorbing materials[J]. Fine Chemicals, 2018, 35(5): 740-745, 763. | |
32 | COSTA A S , ROMÃO L P , ARAÚJO B R , et al . Environmental strategies to remove volatile aromatic fractions (BTEX) from petroleum industry wastewater using biomass[J]. Bioresource Technology, 2012, 105(2): 31-39. |
33 | QIU T , ZENG Y , YE C , et al . Adsorption thermodynamics and kinetics of p-xylene on activated carbon[J]. Journal of Chemical & Engineering Data, 2012, 57(5): 1551-1556. |
34 | 朱洪志 . 文冠果加工剩余物活性碳的制备及对VOC吸附性能研究[D]. 呼和浩特: 内蒙古农业大学, 2014. |
ZHU H Z . Research on preparation and adsorption properties for VOC of activated carbon based on xanthoceras sorbifolia processed residues[D]. Hohhot: Inner Mongolia Agricultural University, 2014. | |
35 | LIM, T-T, HUANG X F . Evaluation of kapok [Ceiba pentandra(L.)Gaertn.] as a natural hollow hydrophobic-oleophilic fibrous sorbent for oil spill cleanup[J]. Chemosphere, 2007, 66(5): 955-963. |
36 | ABDULLAH M A , RAHMAH A U , MAN Z . Physicochemical and sorption characteristics of Malaysian Ceiba pentandra(L.) Gaertn. as a natural oil sorbent[J]. Journal of Hazardous Materials, 2010, 177(1): 683-691. |
37 | 肖红, 于伟东, 施楣梧 . 木棉纤维的基本结构和性能[J]. 纺织学报, 2005, 26(4): 4-6. |
XIAO H , YU W D , SHI M W . Structures and performances of the kapok fiber[J]. Journal of Textile Research, 2005, 26(4): 4-6. | |
38 | KIM J, LEE S S, KHIM J . Peat moss-derived biochars as effective sorbents for VOCs’ removal in groundwater[EB/OL]. Netherlands: Environmental Geochemistry & Health, 2017[2018-09-05]. . |
39 | 刘海弟, 李伟曼, 岳仁亮, 等 . 多微孔活性炭的制备及对二甲苯的吸附研究[J]. 无机化学学报, 2013, 29(9): 1787-1792. |
LIU H D , LI W M , YUE R L , et al . Preparation of active carbon with more micropores and investigation on its xylene-adsorbing ability[J]. Chinese Journal of Inorganic Chemistry, 2013, 29(9): 1787-1792. | |
40 | LENNTECH . Water treatment solutions. Adsorption /active carbon[EB/OL]. [2018-9-5]. . |
41 | BAYAT A , AGHAMIRI S F , MOHEB A , et al . Oil spill cleanup from sea water by sorbent materials[J]. Chemical Engineering Technology, 2005, 28(12): 1525-1528. |
42 | 王璟琳, 刘国宏, 张新荣 . 纳米材料吸附剂的研究进展[J]. 分析化学, 2005, 33(12): 1787-1793. |
WANG J L , LIU G H , ZHANG X R . Recent developments of nanomaterials as sorbents[J]. Chinese Journal of Analytical Chemistry, 2005, 33(12): 1787-1793. | |
43 | JU-NAM Y , LEAD J R . Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications[J]. Science of the Total Environment, 2008, 400(1): 396-414. |
44 | YU F , MA J, WU Y Q . Adsorption of toluene, ethylbenzene and xylene isomers on multi-walled carbon nanotubes oxidized by different concentration of NaOCl[J]. Frontiers of Environmental Science & Engineering, 2012, 6(3): 320-329. |
45 | SU F , LU C , HU S . Adsorption of benzene, toluene, ethylbenzene and p-xylene by NaOCl-oxidized carbon nanotubes[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2010, 353(1): 83-91. |
46 | LU C , SU F , HU S . Surface modification of carbon nanotubes for enhancing BTEX adsorption from aqueous solutions[J]. Applied Surface Scienc, 2008, 254(21): 7035-7041. |
47 | ABBAS A , ABUSSAUD B A , IHSANULLAH, et al . Adsorption of toluene and paraxylene from aqueous solution using pure and iron oxide impregnated carbon nanotubes: kinetics and isotherms study[J]. Bioinorganic Chemistry and Applications, 2017, 2017: 1-11. |
48 | YU F , MA J, WANG J , et al . Magnetic iron oxide nanoparticles functionalized multi-walled carbon nanotubes for toluene, ethylbenzene and xylene removal from aqueous solution[J]. Chemosphere, 2016, 146: 162-172. |
49 | YU F , WU Y , LI X , et al . Kinetic and thermodynamic studies of toluene, ethylbenzene, and m-xylene adsorption from aqueous solutions onto KOH-activated multiwalled carbon nanotubes[J]. Journal of Agricultural & Food Chemistry, 2012, 60(50): 12245-12253. |
50 | 阿拉丁 . 碳纳米管[EB/OL]. [2018-09-05] |
碳纳米管 . | |
Aladdin . Carbon nanotube[EB/OL]. [2018-09-05] | |
碳纳米管 . | |
51 | DHAWAN A , SHARMA V . Toxicity assessment of nanomaterials: methods and challenges[J]. Analytical and Bioanalytical Chemistry, 2010, 398: 589-605. |
52 | JACKSON P , JACOBSEN N R , BAUN A , et al . Bioaccumulation and ecotoxicity of carbon nanotubes[J]. Chemistry Central Journal, 2013, 7: 154-174. |
53 | XU J J , GUO M L , CHEN Q G , et al . Surface grafting of styrene on polypropylene fibers by argon plasma and its adsorption-regeneration of BTX[C]// LI Peiyue. IOP Conference Series: Earth and Environmental Science, 3rd International Conference on Water Resource and Environment, WRE 2017. London, UK: Institute of Physics Publishing. 2017: 1-10. |
54 | LI S , WEI J . Radiation synthesis of polypropylene-acrylate grafted fiber and its remediation in the spillage of water-insoluble organic chemicals[J]. Journal of Polymer Research, 2012, 19(3): 1-6. |
55 | FATHY F , SOLIMAN F M . Synthesis and characterization of a high oil-absorbing poly (methyl methacrylate-butyl acrylate)/ATP–Fe3O4 magnetic composite material[J]. American Journal of Polymer Science and Technology ,2016, 2(1): 1-10. |
56 | YOO S Y, DAUD W M , LEE M G . Preparation of a biodegradable oil absorber and its biodegradation[J]. Bioprocess & Biosystems Engineering, 2012, 35(1/2): 283-288. |
57 | DURGUN M , AYDIN G O , SONMEZ H B . Aromatic alkoxysilane based hybrid organogels as sorbent for toxic organic compounds, fuels and crude oil[J]. Reactive & Functional Polymers, 2017, 115: 63-72. |
58 | KIZIL S , BULBUL S H . Oil loving hydrophobic gels made from glycerol propoxylate: efficient and reusable sorbents for oil spill clean-up[J]. Journal of Environmental Management, 2017, 196: 330-339. |
59 | MOURA C P , VIDAL C B , BARROS A L , et al . Adsorption of BTX (benzene, toluene, o-xylene, and p-xylene) from aqueous solutions by modified periodic mesoporous organosilica[J]. Journal of Colloid & Interface Science, 2011, 363(2): 626-634. |
60 | ZHANG X , SHI F , NIU J , et al . Superhydrophobic surfaces: from structural control to functional application[J]. Journal of Materials Chemistry, 2008, 18: 621-633. |
61 | 党钊, 刘利彬, 向宇, 等 . 超疏水-超亲油材料在油水分离中的研究进展[J]. 化工进展, 2016, 35(s1): 216-222. |
DANG Z , LIU L B , XIANG Y , et al . Progress of superhydrophobic-superoleophilic materials for oil/water separation[J]. Chemical Industry and Engineering Progress, 2016, 35(s1): 216-222. | |
62 | 邱文莲, 贾伟灿, 徐都, 等 . 超疏水材料制备及其在油水分离中的应用研究进展[J]. 材料科学与工程学报, 2016, 34(3): 508-512. |
QIU W L , JIA W C , XU D , et al . Progress in fabrication of superhydrophobic materials and their application in oil-water separation[J]. Journal of Materials Science and Engineering, 2016, 34(3): 508-512. | |
63 | 梁宁宁, 辛振祥, 夏琳 . 聚合物基超疏水材料制备技术的研究进展[J]. 高分子通报, 2014 (9): 25-30. |
LIANG N N , XIN Z Y , XIA L . The research progress in preparation technology of polymer super-hydrophobic material[J]. Chinese Polymer Bulletin, 2014(9): 25-30. | |
64 | XIAO Z , ZHANG M , FAN W , et al . Highly efficient oil/water separation and trace organic contaminants removal based on superhydrophobic conjugated microporous polymer coated devices[J]. Chemical Engineering Journal, 2017, 326: 640-646. |
65 | 祝青, 刘慧慧, 肖春, 等 . 超疏水海绵和氧化硅的制备及复合油水分离性能研究[J]. 功能材料, 2017, 48(2): 02074-02079. |
ZHU Q , LIU H H , XIAO C , et al . Fabrication and composite oil-water separation performance for superhydrophobic sponge and silica powder[J]. Journal of Functional Materials, 2017, 48(2): 02074-02079. | |
66 | ZHOU Y , WANG Y , LIU T , et al . Superhydrophobic hBN-regulated sponges with excellent absorbency fabricated using a green and facile method[J]. Scientific Reports, 2017, 7: 45065-45074. |
67 | PHAM V H , DICKERSON J H . Superhydrophobic silanized melamine sponges as high efficiency oil absorbent materials[J]. ACS Applied Materials & Interfaces, 2014, 6(16): 14181-14188. |
68 | WANG C , YAO T , WU J , et al . Facile approach in fabricating superhydrophobic and superoleophilic surface for water and oil mixture separation[J]. ACS Applied Materials & Interfaces, 2009, 1(11): 2613. |
69 | PATOWARY M , PATHAK K , ANANTHAKRISHNAN R . Robust superhydrophobic and oleophilic silk fibers for selective removal of oil from water surfaces[J]. RSC Advances, 2016, 6(77): 73660-73667. |
70 | GE B , MEN X, ZHU X , et al . A superhydrophobic monolithic material with tunable wettability for oil and water separation[J]. Journal of Materials Science, 2015, 50(6): 2365-2369. |
71 | VENKATESWARA R A , HEGDE N D , HIRASHIMA H . Absorption and desorption of organic liquids in elastic superhydrophobic silica aerogels[J]. Journal of Colloid & Interface Science, 2007, 305(1): 124-132. |
72 | NOVAK Z , CERNCIC S , KNEZ Z . Hydrophobic silica aerogel-solvent removal from water[C]//Perrut, Michel. In Proceedings of 10th European Meeting on Supercritical Fluid. Colmar, France: International Society for the Advancement of Supercritical Fluids, 2005: 1-10. |
73 | ZHA S , ZHANG G , DAWSON N , et al . Study of PVDF/Si-R hybrid hollow fiber membranes for removal of dissolved organics from produced water by membrane adsorption[J]. Separation & Purification Technology, 2016, 163: 290-299. |
74 | 屈孟男, 马利利, 何金梅, 等 . 特异润湿型油水分离材料的研究进展[J]. 材料导报, 2017, 31(19): 152-161. |
QU M N , MA L L, HE J M , et al . Research progress of specific wetting oil-water separation materials[J]. Materials Review, 2017, 31(19): 152-161. |
[1] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[2] | 贺美晋. 分子管理在炼油领域分离技术中的应用和发展趋势[J]. 化工进展, 2023, 42(S1): 260-266. |
[3] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[4] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[5] | 李世霖, 胡景泽, 王毅霖, 王庆吉, 邵磊. 电渗析分离提取高值组分的研究进展[J]. 化工进展, 2023, 42(S1): 420-429. |
[6] | 王莹, 韩云平, 李琳, 李衍博, 李慧丽, 颜昌仁, 李彩侠. 城市污水厂病毒气溶胶逸散特征研究现状与未来展望[J]. 化工进展, 2023, 42(S1): 439-446. |
[7] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[8] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[9] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[10] | 李宁, 李金科, 董金善. 乙烯裂解炉多孔介质燃烧器的研究与开发[J]. 化工进展, 2023, 42(S1): 73-83. |
[11] | 董佳宇, 王斯民. 超声强化对二甲苯结晶特性及调控机理实验[J]. 化工进展, 2023, 42(9): 4504-4513. |
[12] | 廖志新, 罗涛, 王红, 孔佳骏, 申海平, 管翠诗, 王翠红, 佘玉成. 溶剂脱沥青技术应用与进展[J]. 化工进展, 2023, 42(9): 4573-4586. |
[13] | 葛全倩, 徐迈, 梁铣, 王凤武. MOFs材料在光电催化领域应用的研究进展[J]. 化工进展, 2023, 42(9): 4692-4705. |
[14] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[15] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |