化工进展 ›› 2019, Vol. 38 ›› Issue (11): 5200-5209.DOI: 10.16085/j.issn.1000-6613.2019-0143

• 化工园区 • 上一篇    

环氧乙烷反应器泄漏实时监测预警模型构建方法及应用

曾稳稳1(),邓付洁1,蔡静波2,王峰1()   

  1. 1. 北京化工大学国家危险化学品生产系统故障预防与监控基础研究实验室,北京100029
    2. 中国石油技术开发;有限公司,北京 100028
  • 收稿日期:2019-01-21 出版日期:2019-11-05 发布日期:2019-11-05
  • 通讯作者: 王峰
  • 作者简介:曾稳稳(1995—),女,硕士研究生,研究方向为化工安全。E-mail:safetymtxzeng@163.com
  • 基金资助:
    国家自然科学基金(51775029);北京化工大学-中日友好医院生物医学转化工程研究中心2018年度联合基金(PYBZ1809)

Construction method and application of real-time monitoring and warning model of ethylene oxide reactor leakage

Wenwen ZENG1(),Fujie DENG1,Jingbo CAI2,Feng WANG1()   

  1. 1. National Foundation Research Laboratory of Fault Prevention and Control in Hazardous, Beijing University of Chemical Technology, Beijing 100029, China
    2. China Petroleum Technology and Development Corporation, Beijing 100028, China
  • Received:2019-01-21 Online:2019-11-05 Published:2019-11-05
  • Contact: Feng WANG

摘要:

环氧乙烷是一种易燃易爆有毒致癌物,一旦发生泄漏,将造成严重后果。应用实时连续监测预警系统是防控环氧乙烷泄漏着火爆炸的有效手段。常用的气体泄漏后果模拟软件仅能完成单点离线预测,其模型预测结果很难应用于连续监测预警。多参数耦合关系的辨识及其影响效应的定量计算准确性是泄漏监测预警的难点。本文提出环氧乙烷反应器泄漏实时监测预警模型构建方法,确定化工过程实际生产中参数变化范围,基于UDM模型多参数进行正交试验模拟计算环氧乙烷反应器泄漏后扩散、着火、爆炸等事故后果;基于事故后果信息进行压力、温度、泄漏口径、泄漏高度及环境变化等多因素的关联分析,确定影响事故后果的主要影响因素为泄漏口径与泄漏高度;基于主要影响因素的不同事故后果信息数据回归拟合事故后果的定量预测模型;根据泄漏实际工况的多种工艺参数,利用定量预测模型计算事故后果,利用PHAST软件对连续监测预警模型的结果进行对比验证。结果表明该模型与PHAST计算结果基本一致,误差在允许范围内,可用于定量实时连续预测计算。最后,本文依据该方法和实时监测预警模型构建实时连续监测预警系统,根据实际生产过程实时变化进行多参数渠道采集,实现泄漏风险实时连续监测预警,进而为事故预警和应急救援提供技术依据。

关键词: 环氧乙烷, 泄漏, 正交试验设计, 定量计算, 预测模型, 实时监测

Abstract:

Ethylene oxide is a flammable, explosive, toxic carcinogen that can cause serious consequences in the event of a leak. The application of real-time continuous monitoring and early warning system is an effective means to prevent and control the leakage of ethylene oxide. The commonly used gas leakage consequences simulation software can only perform single-point offline prediction, and its model prediction results are difficult to apply to continuous monitoring and early warning. The identification of multi-parameter coupling relationship and the accuracy of quantitative calculation of its effect are the difficulties in monitoring and early warning. In this paper, a real-time monitoring and early warning model construction method for ethylene oxide reactor leakage was proposed to determine the range of parameters in the actual production of chemical process; based on the multi-parameters of unified dispersion model (UDM), orthogonal test simulation was used to calculate the diffusion and ignition of the ethylene oxide reactor after leakage; the correlations among pressure, temperature, leakage caliber, leakage height and environmental changes were analyzed based on the information of accident consequences and the main influencing factors affecting the consequences of the accident were verified as leakage caliber and leakage height. The quantitative prediction model of accident consequence was fitted based on regression of different accident consequence information data of main influencing factors. According to various process parameters of the actual leakage condition, the quantitative prediction model was used to calculate the accident consequences, and PHAST software was used to compare and verify the results of the continuous monitoring and warning model. The results show that the model is basically consistent with the calculation results of PHAST, and the error is within the allowable range. Finally, according to this method and the real-time monitoring and warning model, the real-time continuous monitoring and warning system can be constructed, and the multi-parameter collection can be changed in real time according to the actual production process to realize the real-time continuous monitoring and warning of leakage risk, thus providing technical basis for the accident warning and emergency rescue.

Key words: epoxyethane, leakage, orthogonal experimental design, quantitative calculation, prediction model, real-time monitoring

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn