[1] LEWIS N S. Research opportunities to advance solar energy utilization[J]. Science, 2016, 351(6271):aad1920. [2] COLÓN G. Towards the hydrogen production by photocatalysis[J]. Applied Catalysis A:General, 2016, 518:48-59. [3] REDDY P A, REDDY P V, KWON E, et al. Recent advances in photocatalytic treatment of pollutants in aqueous media[J]. Environ. Int., 2016, 91:94-103. [4] TRELLU C, MOUSSET E, PECHAUD Y, et al. Removal of hydrophobic organic pollutants from soil washing/flushing solutions:a critical review[J]. J. Hazard Mater., 2016, 306:149-174. [5] WANG C, LIU H, QU Y. TiO2-based photocatalytic process for purification of polluted water:bridging fundamentals to applications[J]. Journal of Nanomaterials, 2013, 3:1-14. [6] YU C, YU J C, ZHOU W, et al. WO3 coupled P-TiO2 photocatalysts with mesoporous structure[J]. Catalysis Letters, 2010, 140(3/4):172-183. [7] COMSUP N, PANPRANOT J, PRASERTHDAM P. The effect of phosphorous precursor on the CO oxidation activity of P-modified TiO2 supported Ag catalysts[J]. Catalysis Communications, 2010, 11(15):1238-1243. [8] ANSARI S A, CHO M H. Highly visible light responsive, narrow band gap TiO2 nanoparticles modified by elemental red phosphorus for photocatalysis and photoelectrochemical applications[J]. Sci. Rep., 2016, 6:25405. [9] WANG F, NG W K H, YU J C, et al. Red phosphorus:an elemental photocatalyst for hydrogen formation from water[J]. Applied Catalysis B:Environmental, 2012, 111/112:409-14. [10] QI L, DONG K, ZENG T, et al. Three-dimensional red phosphorus:a promising photocatalyst with excellent adsorption and reduction performance[J]. Catalysis Today, 2018, 314:42-51. [11] REN Z, LI D, XUE Q, et al. Facile fabrication nano-sized red phosphorus with enhanced photocatalytic activity by hydrothermal and ultrasonic method[J]. Catalysis Today, 2018, https://doi.org/10.1016/j.cattod.2018.09.029. [12] SUN Y, REN Z, LIU Y, et al. Facile synthesis of ultrathin red phosphorus nanosheets with excellent photocatalytic performances[J]. Materials Letters, 2019, 236:542-546. [13] ANSARI S A, ANSARI M S, CHO M H. Metal free earth abundant elemental red phosphorus:a new class of visible light photocatalyst and photoelectrode materials[J]. Phys. Chem. Chem. Phys., 2016, 18(5):3921-3928. [14] WANG F, LI C, LI Y, et al. Hierarchical P/YPO4 microsphere for photocatalytic hydrogen production from water under visible light irradiation[J]. Applied Catalysis B:Environmental, 2012, 119/120:267-272. [15] WINCHESTER R A, WHITBY M, SHAFFER M S. Synthesis of pure phosphorus nanostructures[J]. Angew. Chem. Int. Ed. Engl., 2009, 48(20):3616-3621. [16] SHI Z, DONG X, DANG H. Facile fabrication of novel red phosphorus-CdS composite photocatalysts for H2 evolution under visible light irradiation[J]. International Journal of Hydrogen Energy, 2016, 41(14):5908-5915. [17] YUAN Y P, CAO S W, LIAO Y S, et al. Red phosphor/g-C3N4 heterojunction with enhanced photocatalytic activities for solar fuels production[J]. Applied Catalysis B:Environmental, 2013, 140/141:164-168. [18] DANG H, DONG X, DONG Y, et al. Enhancing the photocatalytic H2 evolution activity of red phosphorous by using noble-metal-free Ni(OH)2 under photoexcitation up to 700 nm[J]. RSC Adv., 2014, 4(84):44823-44826. [19] BAI X, DU Y, HU X, et al. Synergy removal of Cr(Ⅵ) and organic pollutants over RP-MoS2/rGO photocatalyst[J]. Applied Catalysis B:Environmental, 2018, 239:204-213. [20] WANG J, ZHANG D, DENG J, et al. Fabrication of phosphorus nanostructures/TiO2 composite photocatalyst with enhancing photodegradation and hydrogen production from water under visible light[J]. J Colloid Interface Sci., 2018, 516:215-223. [21] WANG W, LI G, AN T, et al. Photocatalytic hydrogen evolution and bacterial inactivation utilizing sonochemical-synthesized g-C3N4/red phosphorus hybrid nanosheets as a wide-spectral-responsive photocatalyst:the role of type I band alignment[J]. Applied Catalysis B:Environmental, 2018, 238:126-135. [22] ANSARI S A, ANSARI M O, CHO M H. Facile and scale up synthesis of red phosphorus-graphitic carbon nitride heterostructures for energy and environment applications[J]. Sci. Rep., 2016, 6:27713. [23] SHEN Z, SUN S, WANG W, et al. A black-red phosphorus heterostructure for efficient visible-light-driven photocatalysis[J]. Journal of Materials Chemistry A, 2015, 3(7):3285-3288. [24] BAI X, WAN J, JIA J, et al. Simultaneous photocatalytic removal of Cr(VI) and RhB over 2D MoS2/red phosphorus heterostructure under visible light irradiation[J]. Materials Letters, 2018, 222:187-191. [25] MUHMOOD T, XIA M, LEI W, et al. Under vacuum synthesis of type-Ⅰ heterojunction between red phosphorus and graphene like carbon nitride with enhanced catalytic, electrochemical and charge separation ability for photodegradation of an acute toxicity category-Ⅲ compound[J]. Applied Catalysis B:Environmental, 2018, 238:568-575. [26] CHAN D K L, YU J C, LI Y, et al. A metal-free composite photocatalyst of graphene quantum dots deposited on red phosphorus[J]. J. Environ. Sci.(China), 2017, 60:91-97. [27] GLOVER E N K, ELLINGTON S G, SANKAR G, et al. The nature and effects of rhodium and antimony dopants on the electronic structure of TiO2:towards design of Z-scheme photocatalysts[J]. Journal of Materials Chemistry A, 2016, 4(18):6946-6954. [28] KATO H, HORI M, KONTA R, et al. Construction of Z-scheme type heterogeneous photocatalysis systems for water splitting into H2 and O2 under visible light irradiation[J]. Chemistry Letters, 2004, 33(10):1348-1349. [29] KUDO A. Z-scheme photocatalyst systems for water splitting under visible light irradiation[J]. MRS Bulletin, 2011, 36(1):32-38. [30] SATO S, ARAI T, MORIKAWA T, et al. Selective CO2 conversion to formate conjugated with H2O oxidation utilizing semiconductor/complex hybrid photocatalysts[J]. J. Am. Chem. Soc., 2011, 133(39):15240-15243. |