[1] ZHOU H C, LONG J R, YAGHI O M. Introduction to metal-organic frameworks[J]. Chemical Reviews, 2012, 112(2):673-674. [2] FEREY G, MELLOT-DRAZNIEKS C, SERRE C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science, 2005, 309(5743):2040-2042. [3] GUILLOU N, LIVAGE C, MARROT J, et al. Tetraaquabis (3,5-dicarboxybenzoato-O) cobalt(II)[J]. Acta Crystallographica Section C:Crystal Structure Communications, 2000, 56(12):1427-1428. [4] CHAE H K, SIBERIO-PEREZ D Y, KIM J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature, 2004, 427(6974):523-527. [5] ROWSELL J L C, MILLWARD A R, PARK K S, et al. Hydrogen sorption in functionalized metal-organic frameworks[J]. Journal of the American Chemical Society, 2004, 126(18):5666-5667. [6] YAGHI O M, LI G, LI H. Selective binding and removal of guests in a microporous metal-organic framework[J]. Nature, 1995, 378(6558):703-706. [7] 刘航希, 隋红, 李鑫钢, 等. 甲苯分子在铝基金属-有机骨架材料上的吸附特性[J]. 化工进展, 2016, 35(11):3707-3713. LIU H X, SUI H, LI X G, et al. Adsorption profiles of toluene molecules on Al-based metal organic framework[J]. Chemical Industry and Engineering Progress, 2016, 35(11):3707-3713. [8] SCHLUSENER C, XHINOVCI M, ERNST S J, et al. Solid-solution mixed-linker synthesis of isoreticular Al-based MOFs for an easy hydrophilicity tuning in water-sorption heat transformations[J]. Chemistry of Materials, 2019, 31(11):4051-4062. [9] SUN Z, YANG M, MA Y, et al. Multi-responsive luminescent sensors based on two-dimensional lanthanide-metal organic frameworks for highly selective and sensitive detection of Cr(Ⅲ) and Cr(Ⅵ) ions and benzaldehyde[J]. Crystal Growth & Design, 2017, 17(8):4326-4335. [10] LESZCZYNSKI M K, KORNOWICZ A, PROCHOWICZ D, et al. Straightforward synthesis of single-crystalline and redox-active Cr(Ⅱ)-carboxylate MOFs[J]. Inorganic Chemistry, 2018, 57(9):4803-4806. [11] SUN D, TANG Y, YE D, et al. Tuning the morphologies of MnO/C hybrids by space constraint assembly of Mn-MOFs for high performance Li ion batteries[J]. ACS Applied Materials Interfaces, 2017, 9(6):5254-5262. [12] 胡浩岩, 吕生华, 雷颖, 等. 铁基金属有机骨架材料MIL-53-Fe的合成及鞣制性能[J]. 精细化工, 2019, 36(5), 963-970. HU H Y, LÜ S H, LEI Y, et al. Synthesis and tanning properties of Fe-based metal organic framework MIL-53-Fe[J]. Fine Chemicals. 2019, 36(5), 963-970. [13] SHAO Z, LIU M, DANG J, et al. Efficient catalytic performance for acylation-nazarov cyclization based on an unusual postsynthetic oxidization strategy in a Fe(Ⅱ)-MOF[J]. Inorganic Chemistry, 2018, 57(16):10224-10231. [14] LIU S, ZHANG X, WANG G, et al. High-efficiency Co/CoxSy@S, N-codoped porous carbon electrocatalysts fabricated from controllably grown sulfur-and nitrogen-including cobalt-based MOFs for rechargeable zinc-air batteries[J]. ACS Applied Materials Interfaces, 2017, 9(39):34269-34278. [15] ZHOU Y, MAO Z, WANG W, et al. In-situ fabrication of graphene oxide hybrid Ni-based metal-organic framework (Ni-MOFs@GO) with ultrahigh capacitance as electrochemical pseudocapacitor materials[J]. ACS Applied Materials Interfaces, 2016, 8(42):28904-28916. [16] LUCARELLI C, GALLI S, MASPERO A, et al. Adsorbent-adsorbate interactions in the oxidation of HMF catalyzed by Ni-based MOFs:a DRIFT and FT-IR insight[J]. The Journal of Physical Chemistry C, 2016, 120(28):15310-15321. [17] LEE D Y, SHINDE D V, Yoon S J, et al. Cu-based metal-organic frameworks for photovoltaic application[J]. The Journal of Physical Chemistry C, 2014, 118(30):16328-16334. [18] AHAMAD M N, SHAHID M, AHMAD M, et al. Cu(Ⅱ) MOFs based on bipyridyls:topology, magnetism, and exploring sensing ability toward multiple nitroaromatic explosives[J]. ACS Omega, 2019, 4(4):7738-7749. [19] PROCHOWICZ D, NAWROCKI J, TERLECKI M, et al. Facile mechanosynthesis of the archetypal Zn-based metal-organic frameworks[J]. Inorganic Chemistry, 2018, 57(21):13437-13442. [20] 牛照栋, 张德华, 孟凡凡, 等. 锆基金属有机骨架材料的合成及其对CO2/N2的吸附与分离性能研究[J]. 化工新型材料, 2018, 46(10):123-125. NIU Z D, ZHANG D H, MENG F F, et al. Synthesis of Zr-based metal organic frameworks and its CO2/N2 capture and separation[J]. New Chemical Materials, 2018, 46(10):123-125. [21] LIU H, CHEN F, BAI D, et al. High-pressure methane adsorption in two isoreticular Zr-based metal-organic frameworks constructed from C3-symmetrical tricarboxylates[J]. Crystal Growth & Design, 2017, 17(1):248-254. [22] SHAIKH S M, USOV P M, ZHU J, et al. Synthesis and defect characterization of phase-pure Zr-MOFs based on meso-tetracarboxyphenylporphyrin[J]. Inorganic Chemistry, 2019, 58(8):5145-5153. [23] XIE Y, LIU X, MA X, et al. Small titanium-based MOFs prepared with the introduction of tetraethyl orthosilicate and their potential for use in drug delivery[J]. ACS Applied Materials Interfaces, 2018, 10(16):13325-13332. [24] ROJAS S, GUILLOU N, HORCAJADA P. Ti-based nanoMOF as an efficient oral therapeutic agent[J]. ACS Applied Materials Interfaces, 2019, 11(25):22188-22193. [25] RHAUDERWIEK T, WAITSCHAT S, WUTTKE S, et al. Nanoscale synthesis of two porphyrin-based MOFs with gallium and indium[J]. Inorganic Chemistry, 2016, 55(11):5312-5319. [26] JANG J S, KOO W T, KIM D H, et al. In situ coupling of multidimensional MOFs for heterogeneous metal-oxide architectures:toward sensitive chemiresistors[J]. ACS Central Science, 2018, 4(7):929-937. [27] YANG F, MU H, WANG C, et al. Morphological map of ZIF-8 crystals with five distinctive shapes:feature of filler in mixed-matrix membranes on C3H6/C3H8 separation[J]. Chemistry of Materials, 2018, 30(10):3467-3473. [28] GAILLAC R, PULLUMBI P, BEYER K A, et al. Liquid metal-organic frameworks[J]. Nature Materials, 2017, 16(11):1149-1154. [29] 邰石君, 盛东海, 杨君, 等. 微流控合成尺寸可调的MOF材料nano-UiO-66[J]. 当代化工, 2015, 44(10):2301-2302. TAI S J, SHENG D H, YANG J, et al. Preparation of nano-UiO-66 with tunable particle sizes in continuous flow microreactor[J]. Contemporary Chemical Industry, 2015, 44(10):2301-2302. [30] LIU Q, SONG Y, MA Y, et al. Mesoporous cages in chemically robust MOFs created by a large number of vertices with reduced connectivity[J]. Journal of the American Chemical Society, 2019, 141(1):488-496. [31] SHEN K, ZHANG L, CHEN X, et al. Ordered macro-microporous metalorganic framework single crystals[J]. Science, 2018, 359(6372):206-210. [32] YU J, XIE L H, LI J R, et al. CO2 capture and separations using MOFs:computational and experimental studies[J]. Chemical Reviews, 2017, 117(14):9674-9754. [33] 付秋平, 刘秋霞, 王洋, 等. 金属有机骨架材料Cu3(BTC)2对刚果红的吸附[J]. 化工环保. http://kns.cnki.net/kcms/detail/11.2215.X.20190621.1410.006.html. FU Q P, LIU Q X, WANG Y, et al. Adsorption of Congo red on metal-organic framework material Cu3(BTC)2[J]. Environmental Protection of Chemical Industry. http://kns.cnki.net/kcms/detail/11.2215.X.20190621.1410.006.html. [34] LI L, LIN R B, KRISHNA R, et al. Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites[J]. Science, 2018, 362:443-446 [35] HAN Y, XU H, SU Y, et al. Noble metal (Pt, Au@Pd) nanoparticles supported on metal organic framework (MOF-74) nanoshuttles as high-selectivity CO2 conversion catalysts[J]. Journal of Catalysis, 2019, 370:70-78. [36] 谭雨薇, 龙涛, 刘诗珂, 等. 基于金属有机骨架的电催化产氢研究进展[J]. 应用化工. https://doi.org/10.16581/j.cnki.issn1671-3206.20190613.034. TAN Y W, LONG T, LIU S K, et al. Research progress on electrocatalytic hydrogen production based on metal-organic framework[J]. Applied Chemical Industry. https://doi.org/10.16581/j.cnki.issn1671-3206.20190613.034. [37] ZHENG X X, SHEN L J, CHEN X P, et al. Amino-modified Fe-terephthalate metal-organic framework as an efficient catalyst for the selective oxidation of H2S[J]. Inorganic Chemistry, 2018, 57(16):10081-10089. [38] ZHANG Y, JIA C, WANG Q, et al. Highly sensitive and selective toluene sensor of bimetallic Ni/Fe-MOFs derived porous NiFe2O4 nanorods[J]. Industrial & Engineering Chemistry Research, 2019, 58(22):9450-9457. [39] ASSEN A H, YASSINE O, SHEKHAH O, et al. MOFs for the sensitive detection of ammonia:deployment of fcu-MOF thin films as effective chemical capacitive sensors[J]. ACS Sensors, 2017, 2(9):1294-1301. [40] 董鸿, 孙晓君, 张欣, 等. 纳米金属有机骨架ZIF-90的制备及载药性能研究[J]. 材料导报B, 2018, 32(1):189-192. DONG H, SUN X J, ZHANG X, et al. Synthesis and drug delivery properties of nano metal-organic framework ZIF-90[J]. Materials Review B, 2018, 32(1):189-192. [41] LEI B, WANG M, JIANG Z, et al. Constructing redox-responsive metal-organic framework nanocarriers for anticancer drug delivery[J]. ACS Applied Materials Interfaces, 2018, 10(19):16698-16706. [42] CAVKA J H, JAKOBSEN S, OLSBYE U, et al. A new zirconium inorganic building brick forming metal organic[J]. Journal of the American Chemical Society, 2008, 130:13850-13851. [43] 韩易潼, 刘民, 李克艳, 等. 高稳定性金属有机骨架UiO-66的合成与应用[J]. 应用化学, 2016, 33(4):367-378. HAN Y T, LIU M, LI K Y, et al. Preparation and application of high stability metal-organic framework UiO-66[J]. Chinese Journal of Applied Chemistry, 2016, 33(4):367-378. [44] LYU J, LIU H, ZENG Z, et al. Metal-organic framework UiO-66 as an efficient adsorbent for boron removal from aqueous solution[J]. Industrial & Engineering Chemistry Research, 2017, 56(9):2565-2572. [45] ZHU J, WU L, BU Z, et al. Polyethyleneimine-modified UiO-66-NH2(Zr) metal-organic frameworks:preparation and enhanced CO2 selective adsorption[J]. ACS Omega, 2019, 4(2):3188-3197. [46] WANG Y, LI X, ZHAO S, et al. Thin-film composite membrane with interlayer decorated metal-organic framework UiO-66 toward enhanced forward osmosis performance[J]. Industrial & Engineering Chemistry Research, 2019, 58(1):195-206. [47] KATZ M J, KLET R C, MOON S Y, et al. One step backward is two steps forward:enhancing the hydrolysis rate of UiO-66 by decreasing[OH-] [J]. ACS Catalysis, 2015, 5(8):4637-4642. [48] RAMSAHYE N A, GAO J, JOBIC H, et al. Adsorption and diffusion of light hydrocarbons in UiO-66(Zr):a combination of experimental and modeling tools[J]. The Journal of Physical Chemistry C, 2014, 118(47):27470-27482. [49] LIU L, CHEN Z, WANG J, et al. Imaging defects and their evolution in a metal-organic framework at sub-unit-cell resolution[J]. Nature Chemistry, 2019, 11(7):622-628. [50] KATZ M J, BROWN Z J, COLON Y J, et al. A facile synthesis of UiO-66, UiO-67 and their derivatives[J]. Chemical Communication, 2013, 49(82):9449-9451. [51] SCHAATE A, ROY P, GODT A, et al. Modulated synthesis of Zr-based metal-organic frameworks:from nano to single crystals[J]. Chemistry, 2011, 17(24):6643-6651. [52] PLANAS N, MONDLOCH J E, TUSSUPBAYEV S, et al. Defining the proton topology of the Zr6-based metal-organic framework NU-1000[J]. The Journal of Physical Chemistry Letters, 2014, 5(21):3716-3723. [53] YANG D, BERNALES V, ISLAMOGLU T, et al. Tuning the surface chemistry of metal organic framework nodes:proton topology of the metal-oxide-like Zr6 nodes of UiO-66 and NU-1000[J]. Journal of the American Chemical Society, 2016, 138(46):15189-15196. [54] YANG D, ORTUNO M A, BERNALES V, et al. Structure and dynamics of Zr6O8 metal-organic framework node surfaces probed with ethanol dehydration as a catalytic test reaction[J]. Journal of the American Chemical Society, 2018, 140(10):3751-3759. [55] KATZ M J, MONDLOCH J E, TOTTEN R K, et al. Simple and compelling biomimetic metal-organic framework catalyst for the degradation of nerve agent simulants[J]. Angewandte Chemie Internation Edition, 2014, 53(2):497-501. [56] NGUYEN H G T, SCHWEITZER N M, CHANG C Y, et al. Vanadium-node-functionalized UiO-66:a thermally stable MOF-supported catalyst for the gas-phase oxidative dehydrogenation of cyclohexene[J]. ACS Catalysis, 2014, 4(8):2496-2500. [57] ABDEL-MAGEED A M, RUNGTAWEEVORANIT B, PARLINSKA-WOJTAN M, et al. Highly active and stable single-atom Cu catalysts supported by a metal-organic framework[J]. Journal of the American Chemical Society, 2019, 141(13):5201-5210. [58] WU R, QIAN X, ZHOU K, et al. Highly dispersed Au nanoparticles immobilized on Zr-based metal-organic frameworks as heterostructured catalyst for CO oxidation[J]. Journal of Materials Chemistry A, 2013, 1(45):14294-14299. [59] NA K, CHOI K M, YAGHI O M, et al. Metal nanocrystals embedded in single nanocrystals of MOFs give unusual selectivity as heterogeneous catalysts[J]. Nano Letters, 2014, 14(10):5979-5983. [60] RUNGTAWEEVORANIT B, BAEK J, ARAUJO J R, et al. Copper nanocrystals encapsulated in Zr-based metal-organic frameworks for highly selective CO2 hydrogenation to methanol[J]. Nano Letters, 2016, 16(12):7645-7649. [61] KOBAYASHI H, TAYLOR J M, MITSUKA Y, et al. Charge transfer dependence on CO2 hydrogenation activity to methanol in Cu nanoparticles covered with metal-organic framework systems[J]. Chemical Science, 2019, 10(11):3289-3294. [62] VERMOORTELE F, AMELOOT R, VIMONT A, et al. An amino-modified Zr-terephthalate metal-organic framework as an acid-base catalyst for cross-aldol condensation[J]. Chemical Communication, 2011, 47(5):1521-1523. [63] CHOI K M, NA K, SOMORJAI G A, et al. Chemical environment control and enhanced catalytic performance of platinum nanoparticles embedded in nanocrystalline metal-organic frameworks[J]. Journal of the American Chemical Society, 2015, 137(24):7810-7816. |