[1] 姚宗路, 仉利, 赵立欣, 等. 生物质热解气燃烧装置设计与燃烧特性试验[J]. 农业机械学报, 2017, 48(12):299-305. YAO Z L, ZHANG L, ZHAO L X, et al. Gas burner design and experiment on emission characteristics of biomass pyrolysis gas[J]. Transactions of the Chinese Society of Agricultural Machinery, 2017, 48(12):299-305. [2] 陈雨亭, 王燕刚, 秦恒飞, 等. 基于对生物质焦油催化裂解的催化材料[J]. 广州化工, 2015, 43(13):4-7. CHEN Y L, WANG Y G, QIN H F, et al. Catalytic materials based on the catalytic cracking of biomass tar[J]. Guangzhou Chemical Industry, 2015, 43(13):4-7. [3] 周立进, 王磊, 黄慧慧, 等. 费托合成工艺研究进展[J]. 石油化工, 2012, 41(12):1429-1435. ZHOU L J, WANG L, HUANG H H, et al. Research progresses in Fischer-Tropsch synthesis process[J]. Petrochemical Technology, 2012, 43(12):1429-1435. [4] 齐景丽, 吕秀荣. 利用炼油厂干气制取费-托合成气的可行性探讨[J]. 炼油与化工, 2012, 23(5):1-3. QI J L, LÜ X R. Feasibility of using refinery dry gas to produce F-Tsyngas[J]. Refining and Chemical Industry, 2012, 23(5):1-3. [5] 林伟钢, 宋文立. 丹麦生物质发电的现状和研究发展趋势[J]. 燃料化学学报, 2001, 29(6):650-655. LIN W G, SONG W L. Power production from biomass in Denmark[J]. Journal of Fuel Chemistry and Technology, 2001, 29(6):650-655. [6] 汪俊峰, 常杰, 阴秀丽, 等. 生物质催化合成甲醇的研究[J]. 燃料化学学报, 2005, 33(1):58-61. WANG J F, CHANG J, YIN X L, et al. Catalytic synthesis of methanol from biomass-derived syngas[J]. Journal of Fuel Chemistry and Technology, 2005, 33(1):58-61. [7] 赵先国, 常杰, 吕鹏梅, 等. 生物质流化床富氧气化的实验研究[J]. 燃料化学学报, 2005, 33(2):199-204. ZHAO X G, CHANG J, LÜ P M, et al. Biomass gasification under O2-rich gas in a fluidized bed reactor[J]. Journal of Fuel Chemistry and Technology, 2005, 33(2):199-204. [8] YAN Z, BUKUR D B, GOODMAN D W. Silica-supported rhodium-cobalt catalysts for Fischer-Tropsch synthesis[J]. Catalysis Today, 2011, 160:39-43. [9] ALI S, MOHB ZZBIDI N A, SUBBARAO D. Correlation between Fischer-Tropsch catalytic activity and composition of catalysts[J]. Chemistry Central Journal, 2010, 5(1):68. [10] 杨延涛, 雷廷宙, 徐海燕, 等. 生物质裂解气的催化重整调变特性研究[J]. 河南科学, 2016, 34(6):1678-1681. YANG Y T, LEI T Z, XU H Y, et al. Catalytic reforming and adjustment of biomass fuel gas[J]. Henan Science, 2016, 34(6):1678-1681. [11] OIKE T, KUDO S, YANG H, et al. Sequential pyrolysis and potassium-catalyzed steam-oxygen gasification of woody biomass in a continuous two-stage reactor[J]. Energy & Fuels, 2014, 28(10):6407-6418. [12] BRANDT P, LARSEN E, HENRIKSEN U. High tar reduction in a two-stage gasifier[J]. Energy & Fuels, 2000, 14(4):816-819. [13] ELIZABETH Gusta, AJAY K Dalai, MD Azhar Uddin, et al. Catalytic decomposition of biomass tars with dolomites[J]. Energy & Fuels, 2009, 23(4):2264-2272. [14] 王敬茹, 马腾, 丛宏斌, 等. 生物质热解气重整试验平台设计与试验[J]. 可再生能源, 2019, 37(4):482-487. WANG J R, MA T, CONG H B, et al. Design and experimental test for a biomass pyrolysis gas reforming reactor[J]. Renewable Energy Resources, 2019, 37(4):482-487. [15] 杨建成, 张光义, 许光文, 等. 秸秆热解-页岩灰催化裂解生产低焦油生物合成气[J]. 化工学报, 2017, 68(10):3779-3787. YANG J C, ZHANG G Y, XU G W, et al. Bio-syngas production with low tar content from sorghum straw by pyrolysis and catalytic cracking with oil shale ash[J]. CIESC Journal, 2017, 68(10):3779-3787. [16] CORELLA J, AZNAR M P, DELGADO J, et al. Steam gasification of cellulosic wastes in a fluidized bed with down-stream vessels[J]. Industrial& Engineering Chemistry Research, 1991, 30(10):2252-2262. [17] AZNAR M P, CORELLA J, DELGADO J. Improved steam gasification of lignocellulosic residues in a fluidized bed with commercial steam reforming catalysts[J]. Industrial & Engineering Chemistry Research, 1993, 32(1):1-10. [18] BAKER E G, MUDGE L K, BROWN M D. Steam gasification of biomass with nickel secondary catalysts[J]. Industrial & Engineering Chemistry Research, 1987, 26(1):1335-1339. [19] NARVAEZ I, CORELLA J, ORIO A. Fresh tar elimination over a commercial steam reforming catalyst[J]. Industrial & Engineering Chemistry Research, 1997, 36(2):317-327. [20] 王铁军, 常杰, 吴创之, 等. 生物质气化焦油催化裂解特性[J]. 太阳能学报, 2003, 24(3):376-379. WANG T J, CHANG J, WU C Z, et al. Performance of catalytic cracking of biomass tar[J]. Acta Energiae Solaris Sinica, 2003, 24(3):376-379. [21] VASSILATOS V, TARALLAS G, SIOSTROM K, et al. Catalytic cracking of tar in biomass pyrolysis gas in the presence of calcined dolomite[J]. Industrial & Engineering Chemistry Research, 1992, 70(10):1008-1013. [22] OLIVARES A, AZNAR M P, CABALLERO M A, et al. Produced gas upgrading by in-bed use of dolomite[J]. Industrial & Engineering Chemistry Research, 1997, 36(10):5220-5226. [23] SIMELL P A. Catalytic purification of tarry fuel gas[J]. Fuel, 1990, 71(10):1218-1225. [24] 米铁, 吴正舜, 余新明, 等. CaO催化裂解生物质气化焦油实验研究[J]. 太阳能学报, 2011, 32(5):724-729. MI T, WU Z S, YU X M, et al. The experimental study on biomass tar-cracking by CaO catalyst[J]. Acta Energiae Solaris Sinica, 2011, 32(5):724-729. [25] 陈鸿伟, 王晋权, 庞永梅, 等. 玉米秸秆催化热解试验研究[J]. 可再生能源, 2007, 25(5):19-22. CHEN H W, WANG J Q, PANG Y M, et al. Experimental study of catalytic pyrolysis of corn stalk[J]. Renewable Energy Resources, 2007, 25(5):19-22. [26] HU G, XU S, LI S, et al. Steam gasification of apricot stones with olivine and dolomite as downstream catalysts[J]. Fuel Processing Technology, 2006, 87(5):375-382. [27] 周劲松, 王铁柱, 骆仲泱, 等. 生物质焦油的催化裂解研究[J]. 燃料化学学报, 2003, 31(2):144-48. ZHOU J S, WANG T Z, LUO Z Y, et al. Catalytic cracking of biomass tar[J]. Journal of Fuel Chemistry and Technology, 2003, 31(2):144-148. [28] PONZIO A, KALISZ S, BLASIAK W. Effect of operating conditions on tar and gas composition in high temperature air/steam gasification (HTAG)of plastic containing waste[J]. Fuel Processing Technology, 2006, 87(3):223-233. [29] NORDGREEN T, NEMANOVA V, E NGVALL K, et al. Iron-based materials as tar depletion catalysts in biomass gasification:dependency on oxygen potential[J]. Fuel, 2012, 95:71-78. [30] SIMELL P A, LEPPALAHTI J K, BREDENBERG J B. Catalytic purification of tarry fuel gas with carbonate rocks and ferrous materials[J]. Fuel, 1992, 71(2):211-218. [31] LIU H, CHEN T, CHANG D, et al. Catalytic cracking of tar derived from rice hull gasification over palygorskite-supported Fe and Ni[J]. Journal of Molecular Catalysis A:Chemical, 2012, 363:304-310. [32] LIU H, CHEN T, CHANG D, et al. Effect of preparation method of palygorskite-supported Fe and Ni catalysts on catalytic cracking of biomass tar[J]. Chemical Engineering Journal, 2012, 188:108-112. [33] 刘海波, 陈天虎, 张先龙, 等. 助剂对镍基催化剂催化裂解生物质气化焦油性能的影响[J]. 催化学报, 2010, 31(4):409-414. LIU H B, CHEN T H, ZHANG X L, et al. Effect of additives on catalytic cracking of biomass gasification tar over Nickel-based catalyst[J]. Chinese Journal of Catalysis, 2010, 31(4):409-414. [34] HUANG B S, CHEN H Y, CHUANG K H, et al. Hydrogen production by biomass gasification in a fluidized-bed reactor promoted by an Fe/CaO catalyst[J]. International Journal of Hydrogen Energy, 2012, 37(8):6511-6518. [35] 陈鸿伟, 张志远, 翟建军, 等. 碱/碱土金属对煤热解影响的研究进展[J]. 热力发电, 2017, 46(1):1-6. CHEN H W, ZHANG Z Y, ZHAI J J, et al. Effects of alkali/alkaline earth metals on coal pyrolysis:research progress[J]. Thermal Power Generation, 2017, 46(1):1-6. [36] LI C Z, SATHE C, KERSHAW J R, et al. Fates and roles of alkali and alkaline earth metals during the py-rolysis of a Victorian brown coal[J]. Fuel, 2000, 79(3):427-438. [37] 谭洪, 王树荣, 骆仲泱, 等. 金属盐对生物质热解特性影响试验研究[J]. 工程热物理学报, 2005, 26(5):742-744. TAN H, WANG S R, LUO Z Y, et al. Influence of metallic salt on biomass flash pyrolysis characteristics[J]. Journal of Engineering Thermophysics, 2005, 26(5):742-744. [38] ENCINAR J M, BELTRAN F J, RAMIRO A. Pyrolysis/gasification of agricultural residues by carbon dioxide in the presence of different additives:influence of variables[J]. Fuel Processing Technology, 1998, 55(3):219-233. [39] GUAN G, KAEWPANHA M, HAO X, et al. Promoting effect of potassium addition to calcined scallop shell supported catalysts for the decomposition of tar derived from different biomass resources[J]. Fuel, 2013, 109:241-247. [40] GUAN G, KAEWPANHA M, HAO X, et al. Steam reforming of tar derived from lignin over pompom-like potassium-promoted iron-based catalysts formed on calcined scallop shell[J]. Bioresource Technology, 2013, 139:280-284. [41] AZNAR M P. Commercial steam reforming catalysts to improve biomass gasification with steam-oxygen mixture catalytic tar removal[J]. Industrial & Engineering Chemistry Research, 1998, 37(1):2668-2680. [42] 王磊, 吴创之, 赵增立, 等. 热解焦对生物质焦油催化裂解的影响[J]. 太阳能学报, 2006, 27(5):514-518. WANG L, WU C Z, ZHAO Z L, et al. Effect of char on catalytic cracking of tar from biomass gasification gas with toluene as a model compound[J]. Acta Energiae Solaris Sinica, 2006, 27(5):514-518. [43] 尤占平, 由世俊, 李宪莉, 等. 生物质炭催化裂解焦油的实验研究[J]. 太阳能学报, 2011, 32(5):718-723. YOU Z P, YOU S J, LI X L, et al. Experimental research on tar catalytic cracking over biomass char[J]. Acta Energiae Solaris Sinica, 2011, 32(5):718-723. [44] 孟凡彬, 孟军. 玉米秸秆炭和木屑炭催化裂解焦油的试验研究[J]. 沈阳农业大学学报, 2017, 48(4):472-476. MENG F B, MENG J. Experimental study on catalytic cracking of tar with corn stalk charcoal and sawdust char coal[J]. Journal of Shenyang Agricultural University, 2017, 48(4):472-476. [45] 廖恒易. 气体分离提纯应用变压吸附技术的分析[J]. 科技视界, 2016, 20(7):23-24. LIAO H Y. Analysis of gas pressure separation and application of pressure swing adsorption technology[J]. Science & Technology Vision, 2016, 20(7):23-24. [46] 张沛生. 重油催化裂化干气氢提纯技术的开发[J]. 炼油设计, 1998, 28(3):8-10. ZHANH P S. Development of purification technology of hydrogen from RFCC dry gas[J]. Refining Design, 1998, 28(3):8-10. [47] 纪志愿. 氢提纯工艺的选择及其工业应用[J]. 炼油设计, 1998, 28(6):46-50. JI Z Y. Selection of hydrogen purification process and its commercial application[J]. Refining Design, 1998, 28(6):46-50. [48] 陈昱琪. 膜分离CO2技术进展研究[J]. 现代商贸工业, 2019, 18(9):187-188. CHEN Y Q. Progress in membrane separation of CO2[J]. Modern Trade Industry, 2019, 18(9):187-188. [49] 黄晓磊, 吴旭飞, 宋新巍. 膜分离技术在气体分离纯化中的应用[J]. 化学推进剂与高分子材料, 2018, 16(6):23-28. HUANG X L, WU X F, SONG X W. Application of membrane separation technique in gas separation and purification[J]. Chemical Propellants & Polymeric Materials, 2018, 16(6):23-28. [50] 李红伟, 邓迪, 史宇科, 等. 膜分离法油气回收现状分析与对策[J]. 石油化工腐蚀与防护, 2017, 34(2):25-29. LI H W, DENG D, SHI Y K, et al. Status quo analysis and suggestions for gasoline vapor recovery by membrane separation method[J]. Corrosion & Protection in Petro Chemical Industry, 2017, 34(2):25-29. |