1 |
JOHNSSON F . Perspectives on CO2 capture and storage[J]. Greenhouse Gases Science & Technology, 2011, 1(2): 119-133.
|
2 |
PIRES J C M , MARTINS F G , ALVIM-FERRAZ M C M , et al . Recent developments on carbon capture and storage: an overview[J]. Chemical Engineering Research & Design, 2011, 89(9): 1446-1460.
|
3 |
姚蔓莉, 董艳艳, 谢菁, 等 . 聚乙烯亚胺修饰的氧化硅纳米管基吸附剂的制备及其CO2吸附应用[J]. 物理化学学报, 2014, 30(4): 789-796.
|
|
YAO M L , DONG Y Y , XIE J , et al . Preparation of polyethylenimine-functionalized silica nanotubes and their application for CO2 adsorption[J]. Acta Physico-Chimica Sinica, 2014, 30(4): 789-796.
|
4 |
KOOHESTANIAN E , SADEGHI J , MOHEBBI-KALHORI D , et al . A novel process for CO2 capture from the flue gases to produce urea and ammonia[J]. Energy, 2018, 144: 279-285.
|
5 |
IIJIMA T , YAMAGUCHI T . K2CO3-catalyzed direct synthesis of salicylic acid from phenol and supercritical CO2 [J]. Applied Catalysis A: General, 2008, 345(1): 12-17.
|
6 |
SUN B C , WANG X M , CHEN J M , et al . Synthesis of nano-CaCO3 by simultaneous absorption of CO2 and NH3 into CaCl2 solution in a rotating packed bed[J]. Chemical Engineering Journal, 2011, 168(2): 731-736.
|
7 |
LIM M, HAN G C , AHN J W, et al . Environmental remediation and conversion of carbon dioxide (CO2) into useful green products by accelerated carbonation technology[J]. International Journal of Environmental Research and Public Health, 2010, 7(1): 203-228.
|
8 |
DELIMARSKII Y K , GORODYSKII A V , GRISHCHENKO V F . Cathode liberation of carbon from molten carbonates[J]. Doklady Akademii Nauk, 1964,156: 650-651.
|
9 |
INGRAM M D , BARON B , JANZ G J . The electrolytic deposition of carbon from fused carbonates[J]. Electrochimica Acta, 1966, 11(11):1629-1639.
|
10 |
YIN H Y , MAO X H , TANG D Y , et al . Capture and electrochemical conversion of CO2 to value-added carbon and oxygen by molten salt electrolysis[J]. Energy & Environmental Science, 2013, 6(5): 1538-1545.
|
11 |
IJIJE H V , SUN C G , CHEN G Z . Indirect electrochemical reduction of carbon dioxide to carbon nanopowders in molten alkali carbonates: process variables and product properties[J]. Carbon, 2014, 73(7): 163-174.
|
12 |
MASSOT L , CHAMELOT P , BOUYER F , et al . Studies of carbon nucleation phenomena in molten alkaline fluoride media[J]. Electrochimica Acta, 2003, 48(5): 465-471.
|
13 |
KAWAMURA H , ITO Y . Electrodeposition of cohesive carbon films on aluminum in a LiCl-KCl-K2CO3 melt[J]. Journal of Applied Electrochemistry, 2000, 30(5): 571-574.
|
14 |
SONG Q S , XU Q , WANG Y , et al . Electrochemical deposition of carbon films on titanium in molten LiCl-KCl-K2CO3 [J]. Thin Solid Films, 2012, 520(23): 6856-6863.
|
15 |
IJIJE H V , LAWRENCE, R C, SIAMBUN N J , et al . Electro-deposition and re-oxidation of carbon in carbonate-containing molten salts[J]. Faraday Discussions, 2014, 172: 105-116.
|
16 |
REN J W , LI F F , LAU J, et al . One-pot synthesis of carbon nanofibers from CO2 [J]. Nano Letters, 2015, 15(9): 6142-6148.
|
17 |
DOUGLAS A , MURALIDHARAN N , CARTER R , et al . Sustainable capture and conversion of carbon dioxide into valuable multiwalled carbon nanotubes using metal scrap materials[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 7104-7110.
|
18 |
WU H J , LI Z D , JI D Q , et al . Effect of molten carbonate composition on the generation of carbon material[J]. RSC Advances, 2017, 7(14): 8467-8473.
|
19 |
LI Z D , YUAN D D , WU H J , et al . A novel route to synthesize carbon spheres and carbon nanotubes from carbon dioxide in a molten carbonate electrolyzer[J]. Inorganic Chemistry Frontiers, 2018, 5(1): 208-216.
|
20 |
吴红军, 李志达, 谷笛, 等 . 电化学转化二氧化碳制备碳纳米材料及表征[J]. 东北石油大学学报, 2016, 40(2): 85-89.
|
|
WU H J , LI Z D , GU D , et al . Preparation and characterization of carbon nano-materials obtained from electrochemical conversion of CO2 [J]. Journal of Northeast Petroleum University, 2016, 40(2): 85-89.
|
21 |
TANG D Y , YIN H Y , MAO X H , et al . Effects of applied voltage and temperature on the electrochemical production of carbon powders from CO2 in molten salt with an inert anode[J]. Electrochimica Acta, 2013, 114: 567-573.
|
22 |
IJIJE H V , LAWRENCE R C , CHEN G Z . Carbon electrodeposition in molten salts: electrode reactions and applications[J]. RSC Advances, 2014, 4(67): 35808-35817.
|
23 |
DENG B W , TANG J J , MAO X H , et al . Kinetic and thermodynamic characterization of enhanced carbon dioxide absorption process with lithium oxide-containing ternary molten carbonate[J]. Environmental Science & Technology, 2016, 50(19): 10588-10595.
|
24 |
IJIJE H V , CHEN G Z . Electrochemical manufacturing of nanocarbons from carbon dioxide in molten alkali metal carbonate salts: roles of alkali metal cations[J]. Advances in Manufacturing, 2016, 4(1): 23-32.
|
25 |
LICHT S , WU H J , HETTIGE C , et al . STEP cement: solar thermal electrochemical production of CaO without CO2 emission[J]. Chemical Communications, 2012, 48(48): 6019-6021.
|
26 |
KHANG D Y , XIAO J L , KOCABAS C , et al . Molecular scale buckling mechanics in individual aligned single-wall carbon nanotubes on elastomeric substrates[J]. Nano Letters, 2008, 8(1): 124-130.
|
27 |
LICHT S , DOUGLAS A , REN J W , et al . Carbon nanotubes produced from ambient carbon dioxide for environmentally sustainable lithium-ion and sodium-ion battery anodes[J]. ACS Central Science, 2016, 2(3): 162-168.
|
28 |
WU H J , LI Z D , JI D Q , et al . One-pot synthesis of nanostructured carbon materials from carbon dioxide via electrolysis in molten carbonate salts[J]. Carbon, 2016, 106: 208-217.
|