化工进展 ›› 2019, Vol. 38 ›› Issue (01): 291-303.DOI: 10.16085/j.issn.1000-6613.2018-1494
郝青青1(),宋永红2,赵永华3,张启俭3,刘昭铁2,刘忠文2()
收稿日期:
2018-07-22
修回日期:
2018-09-10
出版日期:
2019-01-05
发布日期:
2019-01-05
通讯作者:
刘忠文
作者简介:
郝青青(1981—),男,博士,副教授,研究方向为碳一化工、多相催化及分子筛合成。E-mail:<email>haoqq@nwu.edu.cn</email>。|刘忠文,教授,研究方向为能源化工与催化。E-mail:<email>zwliu@snnu.edu.cn</email>。
基金资助:
Qingqing HAO1(),Yonghong SONG2,Yonghua ZHAO3,Qijian ZHANG3,Zhaotie LIU2,Zhongwen LIU2()
Received:
2018-07-22
Revised:
2018-09-10
Online:
2019-01-05
Published:
2019-01-05
Contact:
Zhongwen LIU
摘要:
尽管Co基费-托(Fischer-Tropsch,FT)合成催化剂相对较为成熟,但高活性、高稳定性以及高α-烯烃等特定产物选择性Co基催化剂的研发,依然是FT合成过程更大规模工业化应用面临的重大挑战。本文总结分析了Co基FT合成催化剂的结构敏感性、分散度与还原度矛盾、催化剂失活以及产物选择性调控等方面的最新进展和动向。根据Co的尺寸、晶相结构及Co与载体间相互作用影响催化剂活性的规律,认为除通过调变金属载体间相互作用以提高Co的分散度和还原度外,设计制备具有更高本征活性的hcp相Co是提高其质量比活性的有效策略;而进一步提高工业Co基催化剂寿命的关键是抑制Co的烧结和积炭。最后,总结了合成气一步高选择性合成液体燃料的新进展,认为提高双功能催化剂的稳定性以及解决工程化制备问题是实现该过程工业化应用的关键。
中图分类号:
郝青青, 宋永红, 赵永华, 张启俭, 刘昭铁, 刘忠文. 费-托合成钴基催化剂研究进展[J]. 化工进展, 2019, 38(01): 291-303.
Qingqing HAO, Yonghong SONG, Yonghua ZHAO, Qijian ZHANG, Zhaotie LIU, Zhongwen LIU. Recent advances in cobalt-based catalysts for Fischer-Tropsch synthesis[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 291-303.
1 | 相宏伟, 杨勇, 李永旺 . 煤炭间接液化: 从基础到工业化[J]. 中国科学: 化学, 2014, 44 (12): 1876-1892. |
XIANG H W , YANG Y , LI Y W . Indirect coal-to-liquids technology from fundamental research to commercialization[J]. Scientia Sinica Chimica, 2014, 44 (12): 1876-1892. | |
2 | 温晓东, 杨勇, 相宏伟, 等 . 费托合成铁基催化剂的设计基础: 从理论走向实践[J]. 中国科学: 化学, 2017, 47 (11): 1298-1311. |
WEN X D , YANG Y , XIANG H W , et al . The design principle of iron-based catalysts for Fischer-Tropsch synthesis: from theory to practice[J]. Scientia Sinica Chimica, 2017, 47 (11): 1298-1311. | |
3 | 孙启文, 吴建民, 张宗森, 等 . 煤间接液化技术及其研究进展[J]. 化工进展, 2013, 32 (1): 1-12. |
SUN Q W , WU J M , ZHANG Z S , et al . Indirect coal liquefaction technology and its research progress[J]. Chemical Industry and Engineering Progress, 2013, 32(1): 1-12. | |
4 | IGLESIA E , SOLED S L , FIATO R A . Fischer-Tropsch synthesis on cobalt and ruthenium. Metal dispersion and support effects on reaction rate and selectivity[J]. Journal of Catalysis, 1992, 137: 212-224. |
5 | IGLESIA E . Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts[J]. Applied Catalysis A: General, 1997, 161: 59-78. |
6 | BEZEMER G L , BITTER J H , KUIPERS H P , et al . Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts[J]. Journal of American Chemical Society, 2006, 128: 3956-3964. |
7 | PRIETO G , MARTÍNEZ A , CONCEPCIÓN P , et al . Cobalt particle size effects in Fischer-Tropsch synthesis: structural and in situ spectroscopic characterisation on reverse micelle-synthesised Co/ITQ-2 model catalysts[J]. Journal of Catalysis, 2009, 266: 129-144. |
8 | MARTÍNEZ A , PRIETO G . Breaking the dispersion-reducibility dependence in oxide-supported cobalt nanoparticles[J]. Journal of Catalysis, 2007, 245: 470-476. |
9 | MELAET G , LINDEMAN A E , SOMORJAI G A . Cobalt particle size effects in the Fischer-Tropsch synthesis and in the hydrogenation of CO2 studied with nanoparticle model catalysts on silica[J]. Topics in Catalysis, 2014, 57: 500-507. |
10 | HERRANZ T , DENG X , CABOT A , et al . Influence of the cobalt particle size in the CO hydrogenation reaction studied by in situ X-ray absorption spectroscopy[J]. The Journal of Physical Chemistry B, 2009, 113: 10721-10727. |
11 | YANG J , FRØSETH V , CHEN D , et al . Particle size effect for cobalt Fischer-Tropsch catalysts based on in situ CO chemisorption[J]. Surface Science, 2016, 648: 67-73. |
12 | Ø BORG , DIETZEL P D C , SPJELKAVIK A I , et al . Fischer-Tropsch synthesis: cobalt particle size and support effects on intrinsic activity and product distribution[J]. Journal of Catalysis, 2008, 259: 161-164. |
13 | DEN BREEJEN J P , RADSTAKE P B , BEZEMER G L , et al . On the origin of the cobalt particle size effects in Fischer-Tropsch catalysis[J]. Journal of American Chemical Society, 2009, 131: 7197-7203. |
14 | RALSTON W T , MELAET G , SAEPHAN T , et al . Evidence of structure sensitivity in the Fischer-Tropsch reaction on model cobalt nanoparticles by time-resolved chemical transient kinetics[J]. Angewandte Chemie International Edition, 2017, 56: 7415-7419. |
15 | VAN HELDEN P , CIOBÎCĂ I M , COETZER R L J . The size-dependent site composition of FCC cobalt nanocrystals[J]. Catalysis Today, 2016, 261: 48-59. |
16 | KRAUM M , BAERNS M . Fischer-Tropsch synthesis: the influence of various cobalt compounds applied in the preparation of supported cobalt catalysts on their performance[J]. Applied Catalysis A: General, 1999, 186: 189-200. |
17 | J-S GIRARDON , LERMONTOV A S , GENGEMBRE L , et al . Effect of cobalt precursor and pretreatment conditions on the structure and catalytic performance of cobalt silica-supported Fischer-Tropsch catalysts[J]. Journal of Catalysis, 2005, 230: 339-352. |
18 | HONG J P , MARCEAU E , KHODAKOV A Y , et al . Impact of sorbitol addition on the structure and performance of silica-supported cobalt catalysts for Fischer-Tropsch synthesis[J]. Catalysis Today, 2011, 175: 528-533. |
19 | CHENG K , SUBRAMANIAN V , CARVALHO A , et al . The role of carbon pre-coating for the synthesis of highly efficient cobalt catalysts for Fischer-Tropsch synthesis[J]. Journal of Catalysis, 2016, 337: 260-271. |
20 | 石利红, 李德宝, 侯博, 等 . 有机改性二氧化硅及其负载钴催化剂的费托合成反应性能[J]. 催化学报, 2007, 28: 999-1002. |
SHI L H , LI D B , HOU B , et al . Organic modification of SiO2 and its influence on the properties of Co-based catalysts for Fischer-Tropsch synthesis[J]. Chinese Journal of Catalysis, 2007, 28: 999-1002. | |
21 | JIANG Z S , ZHAO Y H , HUANG C F , et al . Metal-support interactions regulated via carbon coating—A case study of Co/SiO2 for Fischer-Tropsch synthesis[J]. Fuel, 2018, 226: 213-220. |
22 | ZHAO Y H , SONG Y H , HAO Q Q , et al . Cobalt-supported carbon and alumina co-pillared montmorillonite for Fischer-Tropsch synthesis[J]. Fuel Processing Technology, 2015, 138: 116-124. |
23 | LIU Y F , FLOREA I , ERSEN O , et al . Silicon carbide coated with TiO2 with enhanced cobalt active phase dispersion for Fischer-Tropsch synthesis[J]. Chemical Communications, 2015, 51: 145-148. |
24 | KARACA H , HONG J , FONGARLAND P , et al . In situ XRD investigation of the evolution of alumina-supported cobalt catalysts under realistic conditions of Fischer-Tropsch synthesis[J]. Chemical Communication, 2010, 46: 788-790. |
25 | KARACA H , SAFONOVA O V , CHAMBREY S , et al . Structure and catalytic performance of Pt-promoted alumina-supported cobalt catalysts under realistic conditions of Fischer-Tropsch synthesis[J]. Journal of Catalysis, 2011, 277: 14-26. |
26 | LIU J X , WANG P , XU W , et al . Particle size and crystal phase effects in Fischer-Tropsch catalysts[J]. Engineering, 2017, 3: 467-476. |
27 | KITAKAMI O , SATO H , SHIMADA Y , et al . Size effect on the crystal phase of cobalt fine particles[J]. Physical Review B, 1997, 56: 13849-13854. |
28 | LIU J X , SU H Y , SUN D P , et al . Crystallographic dependence of CO activation on cobalt catalysts: HCP versus FCC[J]. Journal of American Chemical Society, 2013, 135: 16284-16287. |
29 | LI W Z , LIU J X , GU J , et al . Chemical insights into the design and development of face-centered cubic ruthenium catalysts for Fischer-Tropsch synthesis[J]. Journal of the American Chemical Society, 2017, 139: 2267-2276. |
30 | ANDREEV A S , LACAILLERIE J B , LAPINA O B , et al . Thermal stability and hcp-fcc allotropic transformation in supported Co metal catalysts probed near operando by ferromagnetic NMR[J]. Physical Chemistry Chemical Physics, 2015, 17: 14598-14604. |
31 | O’SHEA V A , PISCINA P R , HOMS N , et al . Development of hexagonal closed-packed cobalt nanoparticles stable at high temperature[J]. Chemistry of Materials, 2009, 21 (23): 5637-5643. |
32 | GNANAMANI M K , JACOBS G , SHAFER W D , et al . Fischer-Tropsch synthesis: activity of metallic phases of cobalt supported on silica[J]. Catalysis Today, 2013, 215: 13-17. |
33 | PEI Y P , LI Z , LI Y W . Highly active and selective Co-based Fischer-Tropsch catalysts derived from metal-organic frameworks[J]. AIChE Journal, 2017, 63(7): 2935-2944. |
34 | CLAEYS M , DRY M E , STEEN E V , et al . In situ magnetometer study on the formation and stability of cobalt carbide in Fischer-Tropsch synthesis[J]. Journal of Catalysis, 2014, 318: 193-202. |
35 | RYTTER E , HOLMEN A . Deactivation and regeneration of commercial type Fischer-Tropsch Co-catalysts—A mini-review[J]. Catalysts, 2015, 5: 478-499. |
36 | LOOSDRECHT J V D , CIOBICA I M , GIBSON P , et al . Providing fundamental and applied insights into Fischer-Tropsch catalysis: Sasol-Eindhoven university of technology collaboration[J]. ACS Catalysis, 2016, 6: 3840-3855. |
37 | TSAKOUMIS N E , RØNNING M , Ø BORG , et al . Deactivation of cobalt based Fischer-Tropsch catalysts: a review[J]. Catalysis Today, 2010, 154: 162-182. |
38 | KISTAMURTHY D , SAIB A M , MOODLEY D J , et al . Ostwald ripening on a planar Co/SiO2 catalyst exposed to model Fischer-Tropsch synthesis conditions[J]. Journal of Catalysis, 2015, 328: 123-129. |
39 | CLARKSON J , ELLIS P R , HUMBLE R , et al . Deactivation of alumina supported cobalt FT catalysts during testing in a continuous-stirred tank reactor (CSTR) [J]. Applied Catalysis A: General, 2018, 550: 28-37. |
40 | PHAAHLAMOHLAKA T N , DLAMINI M W , MOGODI M W , et al . A sinter resistant Co Fischer-Tropsch catalyst promoted with Ru and supported on titania encapsulated by mesoporous silica[J]. Applied Catalysis A: General, 2018, 552: 129-137. |
41 | ISHIHARA D , TAO K , YANG G H , et al . Precisely designing bimodal catalyst structure to trap cobalt nanoparticles inside mesopores and its application in Fischer-Tropsch synthesis[J]. Chemical Engineering Journal, 2016, 306: 784-790. |
42 | SUBRAMANIAN V , CHENG K , LANCELOT C , et al . Nanoreactors: an efficient tool to control the chain-length distribution in Fischer-Tropsch synthesis[J]. ACS Catalysis, 2016, 6: 1785-1792. |
43 | OUYANG R H , LIU J X , LI W X . Atomistic theory of ostwald ripening and disintegration of supported metal particles under reaction conditions[J]. Journal of the American Chemical Society, 2013, 135: 1760-1771. |
44 | MENON P G . Coke on catalysts-harmful, harmless, invisible and beneficial types[J]. Journal of Molecular Catalysis. 1990, 59: 207-220. |
45 | KWAK G , WOO M H , KANG S C , et al . In situ monitoring during the transition of cobalt carbide to metal state and its application as Fischer-Tropsch catalyst in slurry phase[J]. Journal of Catalysis, 2013, 307: 27-36. |
46 | CLAEYS M , DRY M E , STEEN E V , et al . Impact of process conditions on the sintering behavior of an alumina-supported cobalt Fischer-Tropsch catalyst studied with an in situ magnetometer[J]. ACS Catalysis, 2015, 5: 841-852. |
47 | SAIB A M , MOODLEYA D J , CIOBÎCĂ I M , et al . Fundamental understanding of deactivation and regeneration of cobalt Fischer-Tropsch synthesis catalysts[J]. Catalysis Today, 2010, 154: 271-282. |
48 | MOODLEY D J , VAN DE LOOSDRECHT J , SAIB A M , et al . Carbon deposition as a deactivation mechanism of cobalt-based Fischer-Tropsch synthesis catalysts under realistic conditions[J]. Applied Catalysis A: General, 2009, 354: 102-110. |
49 | KEYVANLOO K , FISHER M J , HECKER W C , et al . Kinetics of deactivation by carbon of a cobalt Fischer-Tropsch catalyst: effects of CO and H2 partial pressures[J]. Journal of Catalysis, 2015, 327: 33-47. |
50 | LANCELOT C , ORDOMSKY V V , STEPHAN O , et al . Direct evidence of surface oxidation of cobalt nanoparticles in alumina-supported catalysts for Fischer-Tropsch synthesis[J]. ACS Catalysis, 2014, 4: 4510-4515. |
51 | MADON R J , IGLESIA E . Hydrogen and CO intrapellet diffusion effects in ruthenium-catalyzed hydrocarbon synthesis[J]. Journal of Catalysis, 1994, 149: 428-437. |
52 | 郝青青, 胥娜, 刘昭铁, 等 . 合成气一步法合成清洁汽油的研究进展[J]. 石油化工, 2009, 38(2): 207-214. |
HAO Q Q , XU N , LIU Z T , et al . Recent advances in one-step synthesis of clean gasoline from syngas[J]. Petrochemical Technology, 2009, 38(2): 207-214. | |
53 | 王野, 成康, 张庆红 . 一氧化碳加氢制碳氢化合物反应选择性的调控[J]. 中国科学: 化学, 2012, 42 (4): 363-375. |
WANG Y , CHENG K , ZHANG Q H . Selective regulation of carbon monoxide hydrogenation to hydrocarbons[J]. Scientia Sinica Chimica, 2012, 42 (4): 363-375. | |
54 | ZHANG Q H , CHENG K , KANG J C , et al . Fischer-Tropsch catalysts for the production of hydrocarbon fuels with high selectivity[J]. ChemSusChem, 2014, 7: 1251-1264. |
55 | YAO M , YAO N , SHAO Y , et al . New insight into the activity of ZSM-5 supported Co and Co Ru bifunctional Fischer-Tropsch synthesis catalyst[J]. Chemical Engineering Journal, 2014, 239: 408-415. |
56 | PEREIRA A L C , GONZÁLEZ-CARBALLO J M , PÉREZ-ALONSO F J , et al . Effect of the mesostructuration of the beta zeolite support on the properties of cobalt catalysts for Fischer-Tropsch synthesis[J]. Topics in Catalysis, 2011, 54: 179-189. |
57 | KANG J C , CHENG K , ZHANG L , et al . Mesoporous zeolite-supported ruthenium nanoparticles as highly selective Fischer-Tropsch catalysts for the production of C5-C11 isoparaffins[J]. Angewandte Chemie International Edition, 2011, 50: 5200-5203. |
58 | SARTIPI S , ALBERTS M , MEIJERINK M J , et al . Towards liquid fuels from biosyngas: effect of zeolite structure in hierarchical-zeolite-supported cobalt catalysts[J]. ChemSusChem, 2013, 6: 1646-1650. |
59 | SARTIPI S , PARASHAR K , VALERO-ROMERO M J , et al . Hierarchical H-ZSM-5-supported cobalt for the direct synthesis of gasoline-range hydrocarbons from syngas: advantages, limitations, and mechanistic insight[J]. Journal of Catalysis, 2013, 305: 179-190. |
60 | PENG X B , CHENG K , KANG J C , et al . Impact of hydrogenolysis on the selectivity of the Fischer-Tropsch synthesis: diesel fuel production over mesoporous zeolite-Y-supported cobalt nanoparticles[J]. Angewandte Chemie International Edition, 2015, 54: 4553-4556. |
61 | KIM J C , LEE S , CHO K , et al . Mesoporous MFI zeolite nanosponge supporting cobalt nanoparticles as a Fischer-Tropsch catalyst with high yield of branched hydrocarbons in the gasoline range[J]. ACS Catalysis, 2014, 4: 3919-3927. |
62 | HAO Q Q , WANG G W , LIU Z T , et al . Co/pillared clay bifunctional catalyst for controlling the product distribution of Fischer-Tropsch synthesis[J]. Industrial & Engineering Chemistry Research, 2010, 49: 9004-9011. |
63 | HAO Q Q , LIU Z W , ZhANG B S , et al . Porous montmorillonite heterostructures directed by a single alkyl ammonium template for controlling the product distribution of Fischer-Tropsch synthesis over cobalt[J]. Chemistry of Materials, 2012, 24: 972-974. |
64 | WANG G W , HAO Q Q , LIU Z T , et al . Fischer-Tropsch synthesis over Co/montmorillonite—Insights into the role of interlayer exchangeable cations[J]. Applied Catalysis A: General, 2011, 405(1/2): 45-54. |
65 | HAO Q Q , WANG G W , LIU Z T , et al . Insights into structural and chemical properties of activated montmorillonite for Fischer-Tropsch synthesis over supported cobalt catalysts[M]//DALAI A K. Nanocatalysis for Fuels and Chemicals. Washington, DC: American Chemical Society, 2012: 167-193. |
66 | ZHAO Y H , HAO Q Q , SONG Y H , et al . Cobalt supported on alkaline-activated montmorillonite as an efficient catalyst for Fischer-Tropsch synthesis[J]. Energy & Fuels, 2013, 27: 6362-6371. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[6] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[7] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[8] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[9] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[10] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[11] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[12] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[13] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[14] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[15] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |