化工进展 ›› 2019, Vol. 38 ›› Issue (01): 344-364.DOI: 10.16085/j.issn.1000-6613.2018-1216
收稿日期:
2018-06-11
修回日期:
2018-11-09
出版日期:
2019-01-05
发布日期:
2019-01-05
通讯作者:
梁斌
作者简介:
蒋炜(1976—),男,教授,博士生导师。E-mail:<email>weijiang@scu.edu.cn</email>。|梁斌,教授,博士生导师。E-mail:<email>liangbin@scu.edu.cn</email>。
基金资助:
Wei JIANG(),Chao YANG,Shaojun YUAN,Bin LIANG()
Received:
2018-06-11
Revised:
2018-11-09
Online:
2019-01-05
Published:
2019-01-05
Contact:
Bin LIANG
摘要:
超疏水表面是材料研究热点,而超疏水金属材料在化工领域应用前景广阔。本文对超疏水金属表面材料在制备方法和实际应用的最新进展进行了综述,在浸润模型基础上,重点概括了针对金属构建微纳粗糙结构用于超疏水表面制备的方法,并对包括自清洁、流动减阻、强化换热、抗结冰、金属防腐、油水分离等常见化工领域应用以及新开发的如防垢、滚动造粒、蒸发结晶等新应用方向的最新相关研究成果进行了总结,并提出了规模化绿色廉价快速一步制备稳定高效超疏水金属表面是未来研究趋势。
中图分类号:
蒋炜, 杨超, 袁绍军, 梁斌. 仿生超疏水金属材料制备技术及在化工领域应用进展[J]. 化工进展, 2019, 38(01): 344-364.
Wei JIANG, Chao YANG, Shaojun YUAN, Bin LIANG. Bioinspired superhydrophobic metal materials: preparation methods and applications in chemical engineering[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 344-364.
1 | FORBES P . Self-cleaning materials[J]. Scientific American, 2008, 299:88-95. |
2 | GENZER J , MARMUR A . Biological and synthetic self-cleaning surfaces[J]. MRS Bulletin, 2008, 33: 742-746. |
3 | HOWARTER J A , YOUNGBLOOD J P . Self-cleaning and next generation anti-fog surfaces and coatings[J]. Macromolecular Rapid Communications, 2008, 29: 455-466. |
4 | 张娟芳, 吴永民, 余江龙 . 超疏水材料的应用状况和市场前景分析[J]. 经济师, 2014(10): 265-266. |
ZHANG J F , WU Y M , YU J L . Application status and market prospects of superhydrophobic materials[J]. Economist, 2014(10): 265-266. | |
5 | HE J , MAO M , LU Y , et al . Superhydrophobic anodized Fe surface modified with fluoroalkylsilane for application in LiBr-water absorption refrigeration process[J]. Industrial & Engineering Chemistry Research, 2017, 56: 495-504. |
6 | BARTHLOTT W . Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202: 1-8. |
7 | KIJLSTRA J , REIHS K , KLAMT A . Roughness and topology of ultra-hydrophobic surfaces[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2002, 206: 521-529. |
8 | MARMUR A . The Lotus effect: superhydrophobicity and metastability[J]. Langmuir, 2004, 20: 3517-9. |
9 | AUTUMN K , SIYYI M , LIANG Y A , et al . Evidence for van der Waals adhesion in gecko setae[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99: 12252-12256. |
10 | FENG L , LI S , LI Y , et al . Super‐hydrophobic surfaces: from natural to artificial[J]. Advanced Materials, 2003, 14: 1857-1860. |
11 | GAO X , JIANG L . Biophysics: water-repellent legs of water striders[J]. Nature, 2004, 432: 36. |
12 | GAO X , YAN X , YAO X , et al . The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography[J]. Advanced Materials, 2010, 19: 2213-2217. |
13 | GUO Z , LIU W . Biomimic from the superhydrophobic plant leaves in nature: binary structure and unitary structure[J]. Plant Science, 2007, 172: 1103-1112. |
14 | FENG L , ZHANG Y N , XI J M , et al . Petal effect: a superhydrophobic state with high adhesive force[J]. Langmuir, 2008, 24: 4114-4119. |
15 | PARKER A R , LAWRENCE C R . Water capture by a desert beetle[J]. Nature, 2001, 414: 33-34. |
16 | ZHENG Y , GAO X , JIANG L . Directional adhesion of superhydrophobic butterfly wings[J]. Soft Matter, 2007, 3: 178-182. |
17 | NEINHUIS C , BARTHLOTT W . Characterization and distribution of water-repellent, self-cleaning plant surfaces[J]. Annals of Botany, 1997, 79: 667-677. |
18 | KIM S H . Fabrication of superhydrophobic surfaces[J]. Journal of Adhesion Science and Technology, 2008, 22: 235-250. |
19 | ZHAO X , HU T , ZHANG J . Superhydrophobic coatings with high repellency to daily consumed liquid foods based on food grade waxes[J]. Journal of Colloid and Interface Science, 2018, 515: 255-263. |
20 | DAS S , KUMAR S , SAMAL S K , et al . A review on superhydrophobic polymer nanocoatings: recent development and applications[J]. Industrial & Engineering Chemistry Research, 2018, 57: 2727-2745. |
21 | WANG S , LIU K , XI Y , et al . Bioinspired surfaces with superwettability: new insight on theory, design, and applications[J]. Chemical Reviews, 2015, 115: 8230-8293. |
22 | LIU K , YAO X , JIANG L . Recent developments in bio-inspired special wettability[J]. Chemical Society Reviews, 2010, 39: 3240-3255. |
23 | YOUNG T . An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 1805, 95: 65-87. |
24 | NISHINO T , MEGURO M , NAKAMAE K , et al . The lowest surface free energy based on—CF3 alignment[J]. Langmuir, 1999, 15: 4321-4323. |
25 | WENZEL R N . Resistance of solid sufaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28: 988-994. |
26 | CASSIE A B D , BAXTER S . Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551. |
27 | LAFUMA A , QUÉRÉ D . Superhydrophobic states[J]. Nature Materials, 2003, 2: 457-460. |
28 | WANG S , JIANG L . Definition of superhydrophobic states[J]. Advanced Materials, 2007, 19: 3423-3424. |
29 | GAO X , GUO Z . Biomimetic superhydrophobic surfaces with transition metals and their oxides: a review[J]. Journal of Bionic Engineering, 2017, 14: 401-439. |
30 | WANG S , FENG L , JIANG L . One-step solution-immersion process for the fabrication of stable bionic superhydrophobic surfaces[J]. Advanced Materials, 2006, 18: 767-770. |
31 | SHIRTCLIFFE N J , MCHALE G , NEWTON M I , et al . Wetting and wetting transitions on copper-based super-hydrophobic surfaces[J]. Langmuir, 2005, 21: 937-43. |
32 | QIAN B , SHEN Z . Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates[J]. Langmuir, 2005, 21: 9007-9009. |
33 | FU X , HE X . Fabrication of super-hydrophobic surfaces on aluminum alloy substrates[J]. Applied Surface Science, 2008, 255: 1776-1781. |
34 | WANG Y , WANG W , ZHONG L , et al . Super-hydrophobic surface on pure magnesium substrate by wet chemical method[J]. Applied Surface Science, 2010, 256: 3837-3840. |
35 | QI Y , CUI Z , LIANG B , et al . A fast method to fabricate superhydrophobic surfaces on zinc substrate with ion assisted chemical etching[J]. Applied Surface Science, 2014, 305: 716-724. |
36 | WANG Y , GU Z , XIN Y , et al . Facile formation of super-hydrophobic nickel coating on magnesium alloy with improved corrosion resistance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538: 500-505. |
37 | CHENG Z , DU M , LAI H , et al . From petal effect to lotus effect: a facile solution immersion process for the fabrication of super-hydrophobic surfaces with controlled adhesion[J]. Nanoscale, 2013, 5: 2776-2783. |
38 | SARAKAR D K , SALEEMA N . One-step fabrication process of superhydrophobic green coatings[J]. Surface & Coatings Technology, 2010, 204: 2483-2486. |
39 | WANG Y , LIU X , ZHANG H , et al . Superhydrophobic surfaces created by a one-step solution-immersion process and their drag-reduction effect on water[J]. RSC Advances, 2015, 5: 18909-18914. |
40 | XU J , XU J , CAO Y , et al . Fabrication of non-flaking, superhydrophobic surfaces using a one-step solution-immersion process on copper foams[J]. Applied Surface Science, 2013, 286: 220-227. |
41 | VARSHNEY P , MOHAPATRA S S . Durable and regenerable superhydrophobic coatings for brass surfaces with excellent self-cleaning and anti-fogging properties prepared by immersion technique[J]. Tribology International, 2018, 123: 17-25. |
42 | LOMGA J , VARSHNEY P , NANDA D , et al . Fabrication of durable and regenerable superhydrophobic coatings with excellent self-cleaning and anti-fogging properties for aluminium surfaces[J]. Journal of Alloys and Compounds, 2017, 702: 161-170. |
43 | DARMANIN T , TAFFIN DE GIVENCHY E , AMIGONI S , et al . Superhydrophobic surfaces by electrochemical processes[J]. Advanced Materials, 2013, 25: 1378-1394. |
44 | 罗雨婷, 魏建东, 焦正 . 基于阳极氧化技术制备铝基超疏水表面的研究进展[J]. 材料导报, 2016, 30: 89-96. |
LUO Y T , WEI J D , JIAO Z . Review on anodizing technologies for the fabrication of superhydrophobic aluminum-based surfaces[J]. Materials Review, 2016, 30: 89-96. | |
45 | WANG H , DAI D , WU X . Fabrication of superhydrophobic surfaces on aluminum[J]. Applied Surface Science, 2008, 254: 5599-5601. |
46 | NAKAJIMA D , KIKUCHI T , NATSUI S , et al . Superhydrophilicity of a nanofiber-covered aluminum surface fabricated via pyrophosphoric acid anodizing[J]. Applied Surface Science, 2016, 389: 173-180. |
47 | HE S , ZHENG M , YAO L , et al . Preparation and properties of ZnO nanostructures by electrochemical anodization method[J]. Applied Surface Science, 2010, 256: 2557-2562. |
48 | LIANG J , LIU K , WANG D , et al . Facile fabrication of superhydrophilic/superhydrophobic surface on titanium substrate by single-step anodization and fluorination[J]. Applied Surface Science, 2015, 338: 126-136. |
49 | JIANG W , HE J , XIAO F , et al . Preparation and antiscaling application of superhydrophobic anodized CuO nanowire surfaces[J]. Industrial & Engineering Chemistry Research, 2015, 54: 6874-6883. |
50 | JIANG W , HE J , MAO M , et al . Preparation of superhydrophobic Cu mesh and its application in rolling-spheronization granulation[J]. Industrial & Engineering Chemistry Research, 2016, 55: 5545-5555. |
51 | XIAO F , YUAN S , LIANG B , et al . Superhydrophobic CuO nanoneedle-covered copper surfaces for anticorrosion[J]. Journal of Materials Chemistry A, 2015, 3: 4374-4388. |
52 | LIU W , LUO Y , SUN L , et al . Fabrication of the superhydrophobic surface on aluminum alloy by anodizing and polymeric coating[J]. Applied Surface Science, 2013, 264: 872-878. |
53 | DONG J , OUYANG X , HAN J , et al . Superhydrophobic surface of TiO2 hierarchical nanostructures fabricated by Ti anodization[J]. Journal of Colloid and Interface Scince, 2014, 420: 97-100. |
54 | MIAO J Y , CAI Y , CHAN Y F , et al . A novel carbon nanotube structure formed in ultra-long nanochannels of anodic aluminum oxide templates[J]. Journal of Physical Chemistry B, 2006, 110: 2080-2083. |
55 | THOMPSON G E , WOOD G C . Porous anodic film formation on aluminium[J]. Nature, 1981, 290: 230-232. |
56 | HUANG Y , SARKAR D K , CHEN X G . A one-step process to engineer superhydrophobic copper surfaces[J]. Materials Letters, 2010, 64: 2722-2724. |
57 | LI M , ZHAI J , LIU H , et al . Electrochemical deposition of conductive superhydrophobic zinc oxide thin films[J]. The Journal of Physical Chemistry B, 2003, 107: 9954-9957. |
58 | ZHANG X , SHI F , YU X , et al . Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters: toward super-hydrophobic surface[J]. Journal of the American Chemical Society, 2004, 126: 3064-3065. |
59 | ZHAO N , SHI F , WANG Z , et al . Combining layer-by-layer assembly with electrodeposition of silver aggregates for fabricating superhydrophobic surfaces[J]. Langmuir, 2005, 21: 4713-4716. |
60 | JAIN R , PITCHUMANI R . Fabrication and characterization of zinc-based superhydrophobic coatings[J]. Surface and Coatings Technology, 2018, 337: 223-231. |
61 | HU Y W , LIU S , HUANG S Y , et al . Fabrication of superhydrophobic surfaces of titanium dioxide and nickel through electrochemical deposition on stainless steel substrate[J]. Key Engineering Materials, 2010, 434/435: 496-498. |
62 | XIONG J , SARKAR D K , CHEN X G . Superhydrophobic honeycomb-like cobalt stearate thin films on aluminum with excellent anti-corrosion properties[J]. Applied Surface Science, 2017, 407: 361-370. |
63 | KANG Z , LI W . Facile and fast fabrication of superhydrophobic surface on magnesium alloy by one-step electrodeposition method[J]. Journal of Industrial and Engineering Chemistry, 2017, 50: 50-56. |
64 | WANG H , HU Z , ZHU Y , et al . Toward easily enlarged superhydrophobic materials with stain-resistant, oil-water separation and anticorrosion function by a water-based one-step electrodeposition method[J]. Industrial & Engineering Chemistry Research, 2017, 56: 933-941. |
65 | GUO Z , CHEN X , LI J , et al . ZnO/CuO hetero-hierarchical nanotrees array: hydrothermal preparation and self-cleaning properties[J]. Langmuir, 2011, 27: 6193-200. |
66 | LI J , JING Z , YANG Y , et al . From Cassie state to Gecko state: a facile hydrothermal process for the fabrication of superhydrophobic surfaces with controlled sliding angles on zinc substrates[J]. Surface and Coatings Technology, 2014, 258: 973-978. |
67 | OU J , HU W , XUE M , et al . Superhydrophobic surfaces on light alloy substrates fabricated by a versatile process and their corrosion protection[J]. ACS Applied Materials & Interfaces, 2013, 5: 3101-3107. |
68 | LI L , HUANG T , LEI J , et al . Robust biomimetic-structural superhydrophobic surface on aluminum alloy[J]. ACS Applied Materials & Interfaces, 2015, 7: 1449-1457. |
69 | 蒋春隆, 李文, 贾俊 . 水热法制备片状花簇Co3O4 微纳结构超疏水表面及其性能[J]. 稀有金属与硬质合金, 2015(1): 39-45. |
JIANG C L , LI W , JIA J . Hydrothermal preparation and properties of flaky-cluster Co3O4 superhydrophobic surface with micro/nano-sized microstructure[J]. Rare Metals and Cemented Catbides, 2015(1): 39-45. | |
70 | GUO F , SU X , HOU G , et al . Fabrication of superhydrophobic TiO2 surface with cactus-like structure by a facile hydrothermal approach[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 395: 70-74. |
71 | XIAO C , YAN J , LI T . Fabrication and superhydrophobic property of ZnO micro/nanocrystals via a hydrothermal route[J]. Journal of Nanomaterials, 2014, 2014: 1-6. |
72 | FENG L , ZHU Y , WANG J , et al . One-step hydrothermal process to fabricate superhydrophobic surface on magnesium alloy with enhanced corrosion resistance and self-cleaning performance[J]. Applied Surface Science, 2017, 422: 566-573. |
73 | ZHANG X , SHEN J , HU D , et al . A rapid approach to manufacture superhydrophobic coating on magnesium alloy by one-step method[J]. Surface and Coatings Technology, 2018, 334: 90-97. |
74 | KANG Z , ZHANG J , NIU L . A one-step hydrothermal process to fabricate superhydrophobic hydroxyapatite coatings and determination of their properties[J]. Surface and Coatings Technology, 2018, 334: 84-89. |
75 | HOSONO E , FUJIHARA S , HONMA I , et al . Superhydrophobic perpendicular nanopin film by the bottom-up process[J]. Journal of the American Chemical Society, 2005, 127: 13458-13459. |
76 | SONG J , XU W , LIU X , et al . Fabrication of superhydrophobic Cu surfaces on Al substrates via a facile chemical deposition process[J]. Materials Letters, 2012, 87: 43-46. |
77 | HUANG L , SONG J , LU Y , et al . Superoleophobic surfaces on stainless steel substrates obtained by chemical bath deposition[J]. Micro & Nano Letters, 2017, 12: 76-81. |
78 | CHEN Y , YANG G , JING Z . Synthesis and characterization of superhydrophobic CeO2/ZnO nanotube arrays with low adhesive force[J]. Materials Letters, 2016, 176: 290-293. |
79 | CHEN T , YAN W , HONGTAO L , et al . Facile preparation of superamphiphobic phosphate-Cu coating on iron substrate with mechanical stability, anti-frosting properties, and corrosion resistance[J]. Journal of Materials Science, 2016, 52: 4675-4688. |
80 | CHO Y J , JANG H , K-S LEE , et al . Direct growth of cerium oxide nanorods on diverse substrates for superhydrophobicity and corrosion resistance[J]. Applied Surface Science, 2015, 340: 96-101. |
81 | DE D , SARKAR D K . Superhydrophobic ZnAl double hydroxide nanostructures and ZnO films on Al and glass substrates[J]. Materials Chemistry and Physics, 2017, 185: 195-201. |
82 | VELAYI E , NOROUZBEIGI R . Robust superhydrophobic needle-like nanostructured ZnO surfaces prepared without post chemical-treatment[J]. Applied Surface Science, 2017, 426: 674-687. |
83 | LI J Y , LU S X , XU W G , et al . Preparation of Ag superhydrophobic surface on metal substrates[J]. IOP Conference Series: Materials Science and Engineering, 2018, 292: 012030. |
84 | MA M, MAO Y , GUPTA M , et al . Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition[J]. Macromolecules, 2005, 38: 9742-9748. |
85 | CRICK C R , BEAR J C , KAFIZAS A , et al . Superhydrophobic photocatalytic surfaces through direct incorporation of titania nanoparticles into a polymer matrix by aerosol assisted chemical vapor deposition[J]. Advanced Materials, 2012, 24: 3505-3508. |
86 | CRICK C R , BEAR J C , SOUTHERN P , et al . A general method for the incorporation of nanoparticles into superhydrophobic films by aerosol assisted chemical vapour deposition[J]. Journal of Materials Chemistry A, 2013, 1: 4336-4344. |
87 | REZAEI S , MANOUCHERI I , MORADIAN R , et al . One-step chemical vapor deposition and modification of silica nanoparticles at the lowest possible temperature and superhydrophobic surface fabrication[J]. Chemical Engineering Journal, 2014, 252: 11-16. |
88 | ALJUMAIL M M , ALSAADI M A , DAS R , et al . Optimization of the synthesis of superhydrophobic carbon nanomaterials by chemical vapor deposition[J]. Scientific Reports, 2018, 8: 2778. |
89 | J-Y SHIU , C-W KUO , CHEN P , et al . Fabrication of tunable superhydrophobic surfaces by nanosphere lithography[J]. Chemistry of Materials, 2004, 16: 561–564. |
90 | LONG J , FAN P , ZHONG M , et al . Superhydrophobic and colorful copper surfaces fabricated by picosecond laser induced periodic nanostructures[J]. Applied Surface Science, 2014, 311: 461-467. |
91 | FARSHCHIAN B , GATABI J R , BERNICK S M , et al . Scaling and mechanism of droplet array formation on a laser-ablated superhydrophobic grid[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2018, 547: 49-55. |
92 | 李晶, 赵言辉, 于化东, 等 . 铝合金电刷镀与激光微加工耦合制备超疏水表面及其特性[J]. 中国机械工程, 2017, 28(1): 82-87. |
LI J , ZHAO Y H , YU H D , et al . Fabrication and properties of superhydrophobic surface on aluminum alloys substrates by brush plating and laser processing technology[J]. China Mechanical Engineering, 2017, 28(1): 82-87. | |
93 | GARCIA-GIRON A , ROMANO J M , LIANG Y , et al . Combined surface hardening and laser patterning approach for functionalising stainless steel surfaces[J]. Applied Surface Science, 2018, 439: 516-524. |
94 | YAN H , RASHID M R B A , SI Y K , et al . Wettability transition of laser textured brass surfaces inside different mediums[J]. Applied Surface Science, 2017, 427: 369-375. |
95 | WANG X C , WANG B , XIE H , et al . Picosecond laser micro/nano surface texturing of nickel for superhydrophobicity[J]. Journal of Physics D: Applied Physics, 2018, 51: 115305. |
96 | FENG L , ZHANG Z , MAI Z , et al . A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water[J]. Angewandte Chemie International Edition, 2004, 43: 2012-2014. |
97 | WU W , WANG X , LIU X , et al . Spray-coated fluorine-free superhydrophobic coatings with easy repairability and applicability[J]. ACS Appllied Materials & Interfaces, 2009, 1: 1656-1661. |
98 | NIU L , KANG Z . Spray deposition process to fabricate Cu2O superhydrophobic surfaces on brass mesh for efficient oil-water separation[J]. Materials Letters, 2017, 210: 97-100. |
99 | LIU H , HUANG J , CHEN Z , et al . Robust translucent superhydrophobic PDMS/PMMA film by facile one-step spray for self-cleaning and efficient emulsion separation[J]. Chemical Engineering Journal, 2017, 330: 26-35. |
100 | XU P , PERSHIN L , MOSTAGHIMI J , et al . Efficient one-step fabrication of ceramic superhydrophobic coatings by solution precursor plasma spray[J]. Materials Letters, 2018, 211: 24-27. |
101 | OGIHARA H , XIE J , OKAGAKI J , et al . Simple method for preparing superhydrophobic paper: spray-deposited hydrophobic silica nanoparticle coatings exhibit high water-repellency and transparency[J]. Langmuir, 2012, 28: 4605-4608. |
102 | ZHANG Y , GE D , YANG S . Spray-coating of superhydrophobic aluminum alloys with enhanced mechanical robustness[J]. Journal of Colloid and Interface Science, 2014, 423: 101-107. |
103 | WANG Z , CHEN X , GONG Y , et al . Superhydrophobic nanocoatings prepared by a novel vacuum cold spray process[J]. Surface & Coatings Technology, 2017, 325: 52-57. |
104 | GUO D , HOU K , XU S , et al . Superhydrophobic-superoleophilic stainless steel meshes by spray-coating of a POSS hybrid acrylic polymer for oil-water separation[J]. Journal of Materials Science, 2018, 5: 6403-6413. |
105 | DESSUKY W I E , ABBAS R , SADIK W A , et al . Improved adhesion of superhydrophobic layer on metal surfaces via one step spraying method[J]. Arabian Journal of Chemistry, 2015, 10: 368-377. |
106 | 魏要丽, 杨亮 . 等离子喷涂制备超疏水镀层的研究[J]. 现代化工, 2015, 35(9): 67-68. |
WEI Y L , YANG L . Preparation of super hydrophobic coating by plasma spraying[J]. Modern Chemical Industry, 2015, 35(9): 67-68. | |
107 | 孙小东, 刘刚, 李龙阳, 等 . 热喷涂锌铝合金超疏水涂层的制备及性能[J]. 材料研究学报, 2015(7), 29: 523-528. |
SUN X D , LIU G , LI L Y , et al . Preparation and properties of superhydrophobizted sprayed Zn-Al coating[J]. Chinese Journal of Materials Research, 2015(7), 29: 523-528. | |
108 | LU Y , SATHASIVAM S , SONG J , et al . Robust self-cleaning surfaces that function when exposed to either air or oil[J]. Science, 2015, 347: 1132-1135. |
109 | CHEN A , PENG X , KOCZKUR K , et al . Super-hydrophobic tin oxide nanoflowers[J]. Chemical Communications, 2004, 17: 1964-1965. |
110 | HOU X , ZHOU F , YU B , et al . Superhydrophobic zinc oxide surface by differential etching and hydrophobic modification[J]. Materials Science & Engineering A, 2007, 452: 732-736. |
111 | 康志新, 郭明杰 . 热氧化法制备超疏水Ti表面及其耐腐蚀性[J]. 金属学报, 2013, 49: 629-634. |
KANG Z X , GUO M J . Fabrication of superhydrophobic Ti surface by thermal oxidation and its anticorrosion property[J]. Acta Metallurgica Sinica, 2013, 49: 629-634. | |
112 | SHI Y , YANG W , FENG X , et al . Fabrication of superhydrophobic ZnO nanorods surface with corrosion resistance via combining thermal oxidation and surface modification[J]. Materials Letters, 2015, 151: 24-27. |
113 | SHI Y , WU Y , FENG X , et al . Fabrication of superhydrophobic-superoleophilic copper mesh via thermal oxidation and its application in oil-water separation[J]. Applied Surface Science, 2016, 367: 493-499. |
114 | GUO M , KANG Z , LI W , et al . A facile approach to fabricate a stable superhydrophobic film with switchable water adhesion on titanium surface[J]. Surface and Coatings Technology, 2014, 239: 227-232. |
115 | JIANG W , MAO M , QIU W , et al . Biomimetic superhydrophobic engineering metal surface with hierarchical structure and tunable adhesion: design of microscale pattern[J]. Industrial & Engineering Chemistry Research, 2016, 56: 907-919. |
116 | THIEME M , FRENZEL R , SCHMIDT S , et al . Generation of ultrahydrophobic properties of aluminium—A first step to self-cleaning transparently coated metal surfaces[J]. Advanced Engineering Materials, 2001, 3: 691-695. |
117 | YOHE S T , COLSON Y L , GRINSTAFF M W . Superhydrophobic materials for tunable drug release: using displacement of air to control delivery rates[J]. Journal of the American Chemical Society, 2012, 134: 2016-2019. |
118 | FÜRSTNER R , BARTHLOTT W , NEINHUIS C , et al . Wetting and self-cleaning properties of artificial superhydrophobic surfaces[J]. Langmuir, 2005, 21: 956-961. |
119 | GANESH V A , RAUT H K , NAIR A S , et al . A review on self-cleaning coatings[J]. Journal of Materials Chemistry, 2011, 21: 16304-16322. |
120 | YAMASHITA H , NAKAO H , TAKEUCHI M , et al . Coating of TiO2 photocatalysts on super-hydrophobic porous teflon membrane by an ion assisted deposition method and their self-cleaning performance[J]. Nuclear Instruments & Methods in Physics Research, 2003, 206: 898-901. |
121 | BLOSSEY R . Self-cleaning surfaces - virtual realities[J]. Nature Materials, 2003, 2: 301-306. |
122 | LI H , YU S , HAN X , et al . A stable hierarchical superhydrophobic coating on pipeline steel surface with self-cleaning, anticorrosion, and anti-scaling properties[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 503: 43-52. |
123 | CREMALDI J , BHUSHAN B . Fabrication of bioinspired, self-cleaning superliquiphilic/phobic stainless steel using different pathways[J]. Journal of Colloid and Interface Science, 2018, 518: 284-297. |
124 | NINE M J , COLE M A , JOHNSON L , et al . Robust superhydrophobic graphene-based composite coatings with self-cleaning and corrosion barrier properties[J]. ACS Applied Materials & Interfaces, 2015, 7: 28482. |
125 | 郑建勇, 钟明强, 冯杰 . 基于超疏水原理的自清洁表面研究进展及产业化状况[J]. 化工进展, 2010, 29(2): 281-284. |
ZHENG J Y , ZHONG M Q , FENG J . Research progress and industrialization status of superhydrophobic self-cleaning surfaces[J]. Chemical Industry and Engineering Progress, 2010, 29(2): 281-284. | |
126 | 李小磊, 张会臣 . 超疏水表面减阻特性的研究进展[J]. 润滑与密封, 2016, 41: 116-122. |
LI X L , ZHANG H C . Research progress in drag reduction of superhydrophobic surfaces[J]. Lubrication Engineering, 2016, 41: 116-122. | |
127 | WATANABE K , UDAGAWA H . Drag reduction of non-newtonian fluids in a circular pipe with a highly water-repellent wall[J]. AIChE Journal, 2001, 47: 225-238. |
128 | DANIELLO R J , WATERHOUSE N E , ROTHSTEIN J P . Drag reduction in turbulent flows over superhydrophobic surfaces[J]. Physics of Fluids, 2009, 21: 625. |
129 | SHIRTCLIFFE N J , MCHALE G , NEWTON M I , et al . Superhydrophobic copper tubes with possible flow enhancement and drag reduction[J]. ACS Applied Materials Interfaces, 2009, 1: 1316-1323. |
130 | LI B , YAO Z , HAO P . Incompressible LBGK simulation of flow characteristics in a micro-channel with patterned superhydrophobic surfaces[J]. Applied Mathematical Modelling, 2015, 39: 300-308. |
131 | LEE C , KIM C J . Underwater restoration and retention of gases on superhydrophobic surfaces for drag reduction[J]. Physical Review Letters, 2011, 106: 014502. |
132 | VAKARELSKI I U , MARSTON J O , CHAN D Y , et al . Drag reduction by Leidenfrost vapor layers[J]. Physical Review Letters, 2011, 106: 214501. |
133 | SCHMIDT E , SCHURIG W , SELLSCHOPP W . Condensation of water vapour in film- and drop form[M]. 2018, 4: 544-544. |
134 | CHEN C H , CAI Q , TSAI C , et al . Dropwise condensation on superhydrophobic surfaces with two-tier roughness[J]. Applied Physics Letters, 2007, 90: 53. |
135 | PRESTON D J , MAFRA D L , MIKJKOVIC N , et al . Scalable graphene coatings for enhanced condensation heat transfer[J]. Nano Letters, 2015, 15: 2902-9. |
136 | MILJKOVIC N , WANG E N . Condensation heat transfer on superhydrophobic surfaces[J]. Mrs Bulletin/Materials Research Society, 2013, 38: 397-406. |
137 | ZHU J , LUO Y T , TIAN J , et al . Clustered ribbed-nanoneedle structured copper surfaces with high-efficiency dropwise condensation heat transfer performance[J]. ACS Applied Materials & Interfaces, 2015, 7: 10660-10665. |
138 | ALWAZZAN M , EGAB K , PENG B L , et al . Condensation on hybrid-patterned copper tubes (I): characterization of condensation heat transfer[J]. International Journal of Heat and Mass Transfer, 2017, 112: 991-1004. |
139 | TOURKINE P , MERRER M L , QUERE D . Delayed freezing on water repellent materials[J]. Langmuir, 2009, 25: 7214. |
140 | CAO L , JONES A K , SIKKA V K , et al . Anti-icing superhydrophobic coatings[J]. Langmuir, 2009, 25: 12444-12448. |
141 | MENINI R , GHALMI Z , FARZANEH M . Highly resistant icephobic coatings on aluminum alloys[J]. Cold Regions Science & Technology, 2011, 65: 65-69. |
142 | RUAN M , LI W , WANG B , et al . Preparation and anti-icing behavior of superhydrophobic surfaces on aluminum alloy substrates[J]. Langmuir, 2013, 29: 8482-8491. |
143 | ZHANG Z , CHEN B , LU C , et al . A novel thermo-mechanical anti-icing/de-icing system using bi-stable laminate composite structures with superhydrophobic surface[J]. Composite Structures, 2017, 180: 933-943. |
144 | FENG L , YAN Z , SHI X , et al . Anti-icing/frosting and self-cleaning performance of superhydrophobic aluminum alloys[J]. Applied Physics A, 2018, 124: 142. |
145 |
RUIZ-CABELLO F J M , IBAÑEZ-IBAÑEZ P , PAZ-GOMEZ G , et al . Fabrication of superhydrophobic metal surfaces for anti-icing applications[J]. Journal of Visualized Experiments, 2018, 138. DOI: 10.3791/57635.
DOI URL |
146 | ZHANG H , LAMB R , LEWIS J . Engineering nanoscale roughness on hydrophobic surface—preliminary assessment of fouling behaviour[J]. Science & Technology of Advanced Materials, 2005, 6: 236-239. |
147 | GENZER J , EFIMENKO K . Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review[J]. Biofouling, 2006, 22: 339-360. |
148 | DAMODARAN V B , MURTHY N S . Bio-inspired strategies for designing antifouling biomaterials[J]. Biomaterials Research, 2016, 20: 18. |
149 | BIXLER G D , BHUSHAN B . Rice and butterfly wing effect inspired low drag and antifouling surfaces: a review[J]. Critical Reviews in Solid State and Materials Sciences, 2014, 40: 1-37. |
150 | ZHANG D , WANG L , QIAN H , et al . Superhydrophobic surfaces for corrosion protection: a review of recent progresses and future directions[J]. Journal of Coatings Technology and Research, 2015, 13: 11-29. |
151 | LIU T , YIN Y , CHEN S , et al . Super-hydrophobic surfaces improve corrosion resistance of copper in seawater[J]. Electrochimica Acta, 2007, 52: 3709-3713. |
152 | FIHRI A , BOVERO E , Al-SHAHRANI A , et al . Recent progress in superhydrophobic coatings used for steel protection: a review[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 520: 378-390. |
153 | XU H , LIU J , CHEN Y , et al . Facile fabrication of superhydrophobic polyaniline structures and their anticorrosive properties[J]. Journal of Applied Polymer Science, 2016, 133: 44248. |
154 | CHENG Y , LU S , XU W , et al . Controlled fabrication of NiO/ZnO superhydrophobic surface on zinc substrate with corrosion and abrasion resistance[J]. Journal of Alloys and Compounds, 2017, 723: 225-236. |
155 | FOROOSHANI H M , ALIOFKHAZRAEI M , ROUHAGHDAM A S . Superhydrophobic aluminum surfaces by mechanical/chemical combined method and its corrosion behavior[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 72: 220-235. |
156 | VANITHAKUMARI S C , GEORGE R P , KAMACHI MUDALI U . Environmental stability and long-term durability of superhydrophobic coatings on titanium[J]. Journal of Materials Engineering and Performance, 2017, 26: 2640-2648. |
157 | ZHANG L , JIANG Y , ZAI W , et al . Fabrication of superhydrophobic calcium phosphate coating on Mg-Zn-Ca alloy and its corrosion resistance[J]. Journal of Materials Engineering and Performance, 2017, 26: 6117-6129. |
158 | ZHAO Y , XIAO X , YE Z , et al . Fabrication of durable copper plating superhydrophobic surface with improved corrosion resistance and oil-water separation properties[J]. Applied Physics A, 2018, 124: 193. |
159 | CUI S , LU S , XU W , et al . Fabrication of robust gold superhydrophobic surface on iron substrate with properties of corrosion resistance, self-cleaning and mechanical durability[J]. Journal of Alloys & Compounds, 2017, 728: 271-281. |
160 | HE T , WANG Y , ZHANG Y , et al . Super-hydrophobic surface treatment as corrosion protection for aluminum in seawater[J]. Corrosion Science, 2009, 51: 1757-1761. |
161 | LIU T L , KIM C J . Repellent surfaces. Turning a surface superrepellent even to completely wetting liquids[J]. Science, 2014, 46: 1096-1100. |
162 | JIANG W , FU H , ZHU Y , et al . Floatable superhydrophobic Ag2O photocatalyst without a modifier and its controllable wettability by particle size adjustment[J]. Nanoscale, 2018, 10: 13661-13672. |
163 | MCBRIDE S A , DASH S , VARANASI K K . Evaporative crystallization in drops on superhydrophobic and liquid-impregnated surfaces[J]. Langmuir, 2018, 34: 12350-12358. |
164 | ZHU H , GUO Z . Understanding the separations of oil/water mixtures from immiscible to emulsions on super-wettable surfaces[J]. Journal of Bionic Engineering, 2016, 13: 1-29. |
165 | AGRAWAL S , VON ARNIM V , STEGMAIER T , et al . Role of surface wettability and roughness in emulsion separation[J]. Separation and Purification Technology, 2013, 107: 19-25. |
166 | ZHANG W , SHI Z , ZHANG F , et al . Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux[J]. Advanced Materials, 2013, 25: 2071-2076. |
167 | LEE C H , JOHNSON N , DRELICH J , et al . The performance of superhydrophobic and superoleophilic carbon nanotube meshes in water-oil filtration[J]. Carbon, 2011, 49: 669-676. |
168 | CHEN X , LU H , JIANG W , et al . De-emulsification of kerosene/water emulsions with plate-type microchannels[J]. Industrial & Engineering Chemistry Research, 2010, 49: 9279-9288. |
169 | WANG Z , XIAO C , WU Z , et al . A novel 3D porous modified material with cage-like structure: fabrication and its demulsification effect for efficient oil/water separation[J]. Journal of Materials Chemistry A, 2017, 5: 5895-5904. |
170 | GE J , SHI L A , WANG Y C , et al . Joule-heated graphene-wrapped sponge enables fast clean-up of viscous crude-oil spill[J]. Nature Nanotechnology, 2017, 12: 434-440. |
171 | YUAN S , CHEN C , RAZA A , et al . Nanostructured TiO2/CuO dual-coated copper meshes with superhydrophilic, underwater superoleophobic and self-cleaning properties for highly efficient oil/water separation[J]. Chemical Engineering Journal, 2017, 328: 497-510. |
172 | WANG F , LEI S , LI C , et al . Superhydrophobic Cu mesh combined with a superoleophilic polyurethane sponge for oil spill adsorption and collection[J]. Industrial & Engineering Chemistry Research, 2014, 53: 7141-7148. |
173 | ZHU J , LIU B , LI L , et al . Simple and green fabrication of super-hydrophobic surface by one-step immersion for continuous oil/water separation[J]. Journal of Physical Chemistry A, 2016, 120: 5617-5623. |
174 | 宁波材料所亲油疏水溢油应急材料实现产业化[J].浙江化工, 2016, 47(5): 16. |
Realization of industrialization of hydrophobic oil spill emergency materials in Ningbo material institute[J]. Zhejiang Chemical Industry, 2016, 47(5): 16. | |
175 | MUMM F , VAN HELVOORT A T , SIKORSKI P . Easy route to superhydrophobic copper-based wire-guided droplet microfluidic systems[J]. ACS Nano, 2009, 3: 2647-2652. |
176 | HIZAL F , RUNGRAENG N , LEE J , et al . Nanoengineered superhydrophobic surfaces of aluminum with extremely low bacterial adhesivity[J]. ACS Applied Materials Interfaces, 2017, 9: 12118-12129. |
177 | LI Y , BI J , WANG S , et al . Bio-inspired edible superhydrophobic interface for reducing residual liquid food[J]. Journal of Agricultural & Food Chemistry, 2018, 66: 2143-2150. |
178 | HE J , LI B , WU H , et al . Interaction of miscible solutions and superhydrophobic surfaces[J]. Surface Engineering, 2018, 34: 1-7. |
[1] | 肖辉, 张显均, 兰治科, 王苏豪, 王盛. 液态金属绕流管束流动传热进展[J]. 化工进展, 2023, 42(S1): 10-20. |
[2] | 戚志程, 马润梅, 李双喜, 刘丽静, 闫欣欣. 高压法兰内开孔金属O形环密封性能及变形失效分析[J]. 化工进展, 2023, 42(S1): 166-174. |
[3] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[4] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[5] | 李世霖, 胡景泽, 王毅霖, 王庆吉, 邵磊. 电渗析分离提取高值组分的研究进展[J]. 化工进展, 2023, 42(S1): 420-429. |
[6] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[7] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[8] | 高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676. |
[9] | 葛全倩, 徐迈, 梁铣, 王凤武. MOFs材料在光电催化领域应用的研究进展[J]. 化工进展, 2023, 42(9): 4692-4705. |
[10] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[11] | 李卫华, 于倩雯, 尹俊权, 吴寅凯, 孙英杰, 王琰, 王华伟, 杨玉飞, 龙於洋, 黄启飞, 葛燕辰, 何依洋, 赵灵燕. 酸雨环境下填埋飞灰吨袋破损后重金属的溶出行为[J]. 化工进展, 2023, 42(9): 4917-4928. |
[12] | 李志远, 黄亚继, 赵佳琪, 于梦竹, 朱志成, 程好强, 时浩, 王圣. 污泥与聚氯乙烯共热解重金属特性[J]. 化工进展, 2023, 42(9): 4947-4956. |
[13] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[14] | 潘宜昌, 周荣飞, 邢卫红. 高效分离同碳数烃的先进微孔膜:现状与挑战[J]. 化工进展, 2023, 42(8): 3926-3942. |
[15] | 毛善俊, 王哲, 王勇. 基团辨识加氢:从概念到应用[J]. 化工进展, 2023, 42(8): 3917-3922. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |