[1] ISHIZAKI S, TERADA K, MIYAKE H, et al. Impact of anodic respiration on biopolymer production and consequent membrane fouling[J]. Environmental Science and Technology, 2016, 50(17):9515-9523.
[2] TAN S W, LI W G. Behaviour of fouling-related components in an enhanced membrane bioreactor using marine activated sludge[J]. Bioresource Technology, 2016, 220:401-406.
[3] WEERASEKARA N A, CHOO K H, LEE C H. Biofouling control:Bacterial quorum quenching versus chlorination in membrane bioreactors[J]. Water Research, 2016, 103:293-301.
[4] LIU J D, LIU L F, GAO B, et al. Minute electric field reduced membrane fouling and improved performance of membrane bioreactor[J]. Separation and Purification Technology, 2012, 86:106-112.
[5] CHUNG C M, TOBINO T, CHO K, et al. Alleviation of membrane fouling in a submerged membrane bioreactor with electrochemical oxidation mediated by in-situ free chlorine generation[J]. Water Research, 2016, 96:52-61.
[6] LIU J D, LIU L F, GAO B, et al. Integration of bio-electrochemical cell in membrane bioreactor for membrane cathode fouling reduction through electricity generation[J]. Journal of Membrane Science, 2013, 430:196-202.
[7] TIAN Y, LI H, LI L P, et al. In-situ integration of microbial fuel cell with hollow-fiber membrane bioreactor for wastewater treatment and membrane fouling mitigation[J]. Biosensors and Bioelectronics, 2015, 64(4):189-195.
[8] ZHOU G W, ZHOU Y H, ZHOU G Q, et al. Assessment of a novel overflow-type electrochemical membrane bioreactor (EMBR) for wastewater treatment, energy recovery and membrane fouling mitigation[J]. Bioresource Technology, 2015, 196:648-655.
[9] LI Y J, LIU L F, LIU J D, et al. PPy/AQS (9, 10-anthraquinone-2-sulfonic acid) and PPy/ARS (Alizarin Red's) modified stainless steel mesh as cathode membrane in an integrated MBR/MFC system[J]. Desalination, 2014, 349:94-101.
[10] LI N, LIU L F, YANG F L. Power generation enhanced by a polyaniline-phytic acid modified filter electrode integrating microbial fuel cell with membrane bioreactor[J]. Separation and Purification Technology, 2014, 132:213-217.
[11] LI Y H, LIU L F, YANG F L, et al. Performance of carbon fiber cathode membrane with C-Mn-Fe-O catalyst in MBR-MFC for wastewater treatment[J]. Journal of Membrane Science, 2015, 484:27-34.
[12] LI Y H, LIU L F, YANG F L. High flux carbon fiber cloth membrane with thin catalyst coating integrates bio-electricity generation in wastewater treatment[J]. Journal of Membrane Science, 2016, 505:130-137.
[13] WANG Y K, LI W W, SHENG G P, et al. In-situ utilization of generated electricity in an electrochemical membrane bioreactor to mitigate membrane fouling[J]. Water Research, 2013, 47(15):5794-5800.
[14] LIU J D, LIU L F, GAO B, et al. Integration of microbial fuel cell with independent membrane cathode bioreactor for power generation, membrane fouling mitigation and wastewater treatment[J]. International Journal of Hydrogen Energy, 2014, 39(31):17865-17872.
[15] LIU J M, WANG X H, WANG Z W, et al. Integrating microbial fuel cells with anaerobic acidification and forward osmosis membrane for enhancing bio-electricity and water recovery from low-strength wastewater[J]. Water Research, 2017, 110:74-82.
[16] KUMAR R, SINGH L, ZULARISAM A W, et al. Potential of porous Co3O4 nanorods as cathode catalyst for oxygen reduction reaction in microbial fuel cells[J]. Bioresource Technology, 2016, 220:537-542.
[17] NING X A, WEN W B, ZHANG Y P, et al. Enhanced dewaterability of textile dyeing sludge using micro-electrolysis pretreatment[J]. Journal of Environmental Management, 2015, 161:181-187.
[18] 国家环保总局. 水和废水检测分析方法[M]. 4版. 北京:中国环境科学出版社, 2002. State Environmental Protection Administration. Method of water and wastewater detection and analysis[M]. 4th ed. Beijing:China Environmental Science Press, 2002.
[19] CHEN C Y, CHEN T Y, CHUNG Y C. A comparison of bioelectricity in microbial fuel cells with aerobic and anaerobic anodes[J]. Environmental Technology, 2014, 35(3):286-293.
[20] 马彩霞. 基于纳米材料的微生物燃料电池阳极自介导电子传递机理研究[D]. 重庆:西南大学, 2015. MA C X. Analysis of self-mediated extracellular electron transfer of bacteria cells based on nanostructured anode[D]. Chongqing:Southwest University, 2015.
[21] 周向同. 微生物燃料电池去除叠氮化物和氨氮的特性与机制[D]. 哈尔滨:哈尔滨工业大学, 2016. ZHOU X T. Characteristics and mechanisms of microbial fuel cell removing azide and ammonia[D]. Harbin:Harbin Institute of Technology, 2016.
[22] 邹聪慧, 徐方成, 陈新华. 海洋产电菌Shewanella marisflavi EP1的脱色特性[J]. 微生物学通报, 2011, 38(1):2-7. ZOU C H, XU F C, CHEN X H. Decolorization of dyes by a current-producing bacterium Shewanella marisflavi EP1 isolated from sea sediments[J]. Microbiology China, 2011, 38(1):2-7.
[23] MEITL L A, EGGLESTON C M, COLBERG P J S, et al. Electrochemical interaction of Shewanella oneidensis MR-1 and its outer membrane cytochromes OmcA and MtrC with hematite electrodes[J]. Geochimica Et Cosmochimica Acta, 2009, 73(18):5292-5307.
[24] ZHAO Y N, LI X F, REN Y P, et al. Effect of static magnetic field on the performances of and anode biofilms in microbial fuel cells[J]. RSC Advances, 2016, 85(6):82301-82308.
[25] PENG X H, YU H B, WANG X, et al. Enhanced performance and capacitance behavior of anode by rolling Fe3O4 into activated carbon in microbial fuel cells[J]. Bioresource Technology, 2012, 121(10):450-453.
[26] MILLER D J, KASEMSET S, PAUL D R, et al. Comparison of membrane fouling at constant flux and constant transmembrane pressure conditions[J]. Journal of Membrane Science, 2014, 454(6):505-515.
[27] WANG J, ZHENG Y W, JIA H, et al. In situ investigation of processing property in combination with integration of microbial fuel cell and tubular membrane bioreactor[J]. Bioresource Technology, 2013, 149:163-168.
[28] BORDEN A J, MEI H C, BUSSCHER H J. Electric-current-induced detachment of Staphylococcus epidermidis strains from surgical stainless steel[J]. Journal of Biomedical Materials Research Part B, 2010, 68B (2):160-164.
[29] XU L, ZHANG G Q, YUAN G E, et al. Anti-fouling performance and mechanism of anthraquinone/polypyrrole composite modified membrane cathode in a novel MFC-aerobic MBR coupled system[J]. RSC Advances, 2015, 29(5):22533-22543.
[30] ZHANG G Q, YANG F L, GAO M M, et al. Electro-Fenton degradation of azo dye using polypyrrole/anthraquinonedisulphonate composite film modified graphite cathode in acidic aqueous solutions[J]. Electrochimica Acta, 2008, 53(16):5155-5161.
[31] HASAN S W, ELEKTOROWICZ M, OLESZKIEWICZ J A. Correlations between trans-membrane pressure (TMP) and sludge properties in submerged membrane electro-bioreactor (SMEBR) and conventional membrane bioreactor (MBR)[J]. Bioresource Technology, 2012, 120(3):199-205.
[32] GHOLIKANDI G B, ZAKIZADEH N, MASIHI H. Application of peroxymonosulfate-ozone advanced oxidation process for simultaneous waste-activated sludge stabilization and dewatering purposes:a comparative study[J]. Journal of Environmental Management, 2018, 206:523-531.
[33] LIEW M K H, FANE A G, ROGERS P L. Hydraulic resistance and fouling of microfilters by Candida utilis in fermentation broth[J]. Biotechnology and Bioengineering, 1995, 48(2):108-117.
[34] 胡小兵, 叶星, 周元凯, 等. 胞外聚合物对活性污泥吸附生活污水碳源的影响[J]. 环境科学学报, 2016, 36(11):4062-4069. HU X B, YE X, ZHOU Y K, et al. The effect of extracellular polymeric substances on adsorption of the carbon source in sewage by activated sludge[J]. Acta Scientiae Circumstantiae, 2016, 36(11):4062-4069.
[35] 陈得军, 闫长领, 王公轲, 等. Cu(Ⅱ)与牛血清白蛋白结合位点数和结合平衡常数的研究[J]. 河南师范大学学报(自然科学版), 2009, 37(4):187-187. CHEN D J, YAN C L, WANG G K, et al. Study on the number of binding sites and binding equilibrium constant of Cu(Ⅱ) with bovine serum albumin[J]. Journal of Henan Normal University (Natural Science Edition), 2009, 37(4):187-187. |