[1] ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179):652-657.
[2] TAYLOR S R. Abundance of chemical elements in the continental crust:a new table[J]. Geochimica et Cosmochimica Acta, 1964, 28(8):1273-1285.
[3] WU X, LEONARD D P, JI X. Emerging non-aqueous potassium-ion batteries:challenges and opportunities[J]. Chemistry of Materials, 2017, 29(12):5031-5042.
[4] MARCUS Y. Thermodynamic functions of transfer of single ions from water to nonaqueous and mixed solvents. Part 3:standard potentials of selected electrodes[J]. Pure & Applied Chemistry, 1985, 57(8):1129-1132.
[5] LEI K, LI F, MU C, et al. High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolyte[J]. Energy & Environmental Science, 2017, 10(2):552-557.
[6] OKOSHI M, YAMADA Y, KOMABA S, et al. Theoretical analysis of interactions between potassium ions and organic electrolyte solvents:a comparison with lithium, sodium, and magnesium ions[J]. Journal of the Electrochemical Society, 2017, 164(2):A54-A60.
[7] JIAN Z, LUO W, JI X L. Carbon electrodes for K-ion batteries[J]. Journal of the American Chemical Society, 2015, 137(36):11566-11569.
[8] KOMABA S, HASEGAWA T, DAHBI M, et al. Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors[J]. Electrochemistry Communications, 2015, 60:172-175.
[9] JIAN Z, XING Z, BOMMIER C, et al. Hard carbon microspheres:potassium-ion anode versus sodium-ion anode[J]. Advanced Energy Materials, 2016, 6(3):1501874.
[10] 王昊, 邓邦为, 葛武杰, 等. 普鲁士蓝类材料在钠离子电池中的研究进展[J]. 化学进展, 2017, 29(6):683-694. WANG H, DENG B W, GE W J, et al. Recent advances in Prussian blue analogues materials for sodium-ion batteries[J]. Progress in Chemisiry, 2017, 29(6):683-694.
[11] WANG R Y, WESSELLS C D, HUGGINS R A, et al. Highly reversible open framework nanoscale electrodes for divalent ion batteries[J]. Nano Letters, 2013, 13(11):5748-5752.
[12] WESSELLS C D, MCDOWELL MT, PEDDADA S V, et al. Tunable reaction potentials in open framework nanoparticle battery electrodes for grid-scale energy storage[J]. ACS Nano, 2012, 6(2):1688-1694.
[13] EFTEKHARI A, JIAN Z, JI X L. Potassium secondary batteries[J]. ACS Applied Materials & Interfaces, 2016, 9(5):4404-4419.
[14] BIE X, KUBOTA K, HOSAKA T, et al. A novel K-ion battery:hexacyanoferrate(Ⅱ)/graphite cell[J]. Journal of Materials Chemistry A, 2017, 5(9):4325-4330.
[15] LING C, CHEN J, MIZUNO F. First-principles study of alkali and alkaline earth ion intercalation in iron hexacyanoferrate:the important role of ionic radius[J]. Journal of Physical Chemistry C, 2013, 117(41):21158-21165.
[16] EFTEKHARI A. Potassium secondary cell based on Prussian blue cathode[J]. Journal of Power Sources, 2004, 126(1/2):221-228.
[17] FU Z, SHADIKE Z, SHI D, et al. Long life and high-rate berlin green FeFe(CN)6 cathode material for non-aqueous potassium-ion battery[J]. Journal of Materials Chemistry A, 2017, 5(14):6393-6398.
[18] NOSSOL E, SOUZA V H, ZARBIN A J. Carbon nanotube/Prussian blue thin films as cathodes for flexible, transparent and ITO-free potassium secondary battery[J]. Journal of Colloid & Interface Science, 2016, 478:107-116.
[19] PADIGI P, THIEBES J, SWAN M, et al. Prussian green:a high rate capacity cathode for potassium ion batteries[J]. Electrochimica Acta, 2015, 166:32-39.
[20] WESSELLS C D, PEDDADA S V, HUGGINS R A, et al. Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries[J]. Nano Letters, 2011, 11(12):5421-5425.
[21] ZHANG C, XU Y, ZHOU M, et al. Potassium Prussian blue nanoparticles:a low-cost cathode material for potassium-ion batteries[J]. Advanced Functional Materials, 2017, 27(4):1604307.
[22] XUE L, LI Y, GAO H, et al. Low-cost high-energy potassium cathode[J]. Journal of the American Chemical Society, 2017, 139(6):2164-2167.
[23] HE G, NAZAR L F. Crystallite size control of prussian white analogues for non-aqueous potassium-ion batteries[J]. ACS Energy Letters, 2017, 2(5):1122-1127.
[24] WU X, JIAN Z, LI Z, et al. Prussian white analogues as promising cathode for non-aqueous potassium-ion batteries[J]. Electrochemistry Communications, 2017, 77:54-57.
[25] CRUMBLISS A L, LUGG P S, MOROSOFF N. Alkali metal cation effects in a Prussian blue surface modified electrode[J]. Inorganic Chemistry, 1984, 23:4701-4708.
[26] ITAYA K, ATAKA T, TOSHIMA S. Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes[J]. Journal of the American Chemical Society, 1982, 104:4767-4772.
[27] WESSELLS C D, PEDDADA S V, MCDOWELL M T, et al. The effect of insertion species on nanostructured open framework hexacyanoferrate battery electrodes[J]. Journal of the Electrochemical Society, 2012, 159(2):A98-A103.
[28] WESSELLS C D, HUGGINS R A, CUI Y. Copper hexacyanoferrate battery electrodes with long cycle life and high power[J]. Nature Communications, 2011, 2(1):550.
[29] LU Y, WANG L, CHENG J, et al. Prussian blue:a new framework of electrode materials for sodium batteries[J]. Chemical Communications, 2012, 48(52):6544-6546.
[30] WU X, WU C, WEI C, et al. Highly crystallized Na2CoFe(CN)6 with suppressed lattice defects as superior cathode material for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 8(8):5393-5399.
[31] YOU Y, WU X L, YIN Y X, et al. High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries[J]. Energy & Environmental Science, 2014, 7(5):1643-1647.
[32] HE G, NAZAR L F. Crystallite size control of prussian white analogues for nonaqueous potassium-ion batteries[J]. ACS Energy Letters, 2017, 2(5):1122-1127.
[33] WANG L, LU Y, LIU J, et al. A superior low-cost cathode for a Na-ion battery[J]. Angewandte Chemie:International Edition, 2013, 52(7):1964-1967.
[34] DELMAS C, BRACONNIER J J, FOUASSIER C, et al. Electrochemical intercalation of sodium in NaxCoO2 bronzes[J]. Solid State Ionics, 1981, 3/4:165-169.
[35] 吴国良, 刘人敏. LiCoO2正极材料的制备及其应用研究[J]. 电池, 2000, 30(3):105-107. WU G L, LIU R M. Preparation and application of LiCoO2 as positive active material for lithium-ion batteries[J]. Battery Bimonthly, 2000, 30(3):105-107.
[36] DELMAS C, FOUASSIER C, HAGENMULLER P. Les bronzes de cobalt KxCoO2(x<1). L'oxyde KCoO2[J]. Journal of Solid State Chemistry, 1975, 13(3):165-171.
[37] HIRONAKA Y, KUBOTA K, KOMABA S. P2-and P3-KxCoO2 as an electrochemical potassium intercalation host[J]. Chemical Communications, 2017, 53(26):3693-3696.
[38] KIM H, KIM J C, BO S H, et al. K-ion batteries based on a P2-type K0.6CoO2 cathode[J]. Advanced Energy Materials, 2017, 7(17):1700098.
[39] YABUUCHI N, KOMABA S. Recent research progress on iron-and manganese-based positive electrode materials for rechargeable sodium batteries[J]. Science & Technology of Advanced Materials, 2014, 15(4):043501.
[40] VAALMA C, GIFFIN G A, BUCHHOLZ D, et al. Non-aqueous K-ion battery based on layered K0.3MnO2 and hard carbon/carbon black[J]. Journal of the Electrochemical Society, 2016, 163(7):A1295-A1299.
[41] KIM H, SEO D H, KIM J C, et al. Investigation of potassium storage in layered P3-type K0.5MnO2 cathode[J]. Advanced Materials, 2017, 29(37):1702480.
[42] WANG X, XU X, NIU C, et al. Earth abundant Fe/Mn-based layered oxide interconnected nanowires for advanced K-ion full batteries[J]. Nano Letters, 2017, 17(1):544-550.
[43] WANG P F, YOU Y, YIN Y X, et al. Layered oxide cathodes for sodium on batteries:phase transition, air stability, and performance[J]. Advanced Energy Materials, 2018, 8(8):1701912.
[44] MASQUELIER C, CROGUENNEC L. Polyanionic(phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li(or Na) batteries[J]. Chemical Reviews, 2013, 113(8):6552-6591.
[45] 张英杰, 朱子翼, 董鹏, 等. LiFePO4电化学反应机理、制备及改性研究新进展[J]. 物理化学学报, 2017, 33(6):1085-1107. ZHANG Y J, ZHU Z Y, DONG P, et al. New research progress of the electrochemical reaction mechanism, preparation and modification for LiFePO4[J]. Acta Physico-Chimica Sinica, 2017, 33(6):1085-1107.
[46] 李景坤, 廖小珍, 马紫峰. LiFePO4正极材料制备过程研究进展[J]. 化工进展, 2010, 29(8):1508-1512. LI J K, LIAO X Z, MA Z F. Research progress in preparation process of LiFePO4 cathode materials for lithium ion battery[J]. Chemical Industry and Engineering Progress, 2010, 29(8):1508-1512.
[47] MATHEW V, KIM S, KANG J, et al. Amorphous iron phosphate:potential host for various charge carrier ions[J]. NPG Asia Material, 2014, 6:e138.
[48] YAKUBOVICH O V, MASSA W, DIMITROVA O V. A new type of anionic framework in microporous potassium iron(Ⅱ) phosphate K[Fe(PO4)] [J]. Zeitschrift für Anorganische und Allgemeine Chemie, 2005, 631(12):2445-2449.
[49] RECHAM N, ROUSSE G, SOUGRATI M T, et al. Preparation and characterization of a stable FeSO4F-based framework for alkali ion insertion electrodes[J]. Chemistry of Materials, 2012, 24(22):4363-4370.
[50] HAN J, LI G N, LIU F, et al. Investigation of K3V2(PO4)3/C nanocomposites as high-potential cathode materials for potassium-ion batteries[J]. Chemical Communications, 2017, 53(11):1805-1808.
[51] HAN J, NIU Y, BAO S J, et al. Nanocubic KTi2(PO4)3 electrodes for potassium-ion batteries[J]. Chemical Communications, 2016, 52(78):11661-11664.
[52] CHIHARA K, KATOGI A, KUBOTA K, et al. KVPO4F and KVOPO4 toward 4 volt-class potassium-ion batteries[J]. Chemical Communications, 2017, 53(37):5208-5211.
[53] CHEN Y, LUO W, CARTER M, et al. Organic electrode for non-aqueous potassium-ion batteries[J]. Nano Energy, 2015, 18:205-211.
[54] XING Z, JIAN Z, LUO W, et al. A perylene anhydride crystal as a reversible electrode for K-ion batteries[J]. Energy Storage Materials, 2016, 2:63-68.
[55] JIAN Z, LIANG Y, RODRIGUEZ-PEREZ I A, et al. Poly(anthraquinonyl sulfide) cathode for potassium-ion batteries[J]. Electrochemistry Communications, 2016, 71:5-8.
[56] WANG Z, SELBACH S M, GRANDE T. Van der waals density functional study of the energetics of alkali metal intercalation in graphite[J]. RSC Advances, 2013, 4(8):4069-4079.
[57] ZIAMBARAS E, KLEIS J, SCHRODER E, et al. Potassium intercalation in graphite:a van der waals density-functional study[J]. Physical Review B, 2007, 76(15):155425.
[58] SCHLEEDE A, WELLMANN M. Notiz über die herstellung eines lindemannglases für kapillaren zwecks aufnahme von luftempfindlichen substanzen mit langwelliger röntgenstrahlung[J]. Zeitschrift für Kristallographie:Crystalline Materials, 1932, 83(1):148-149.
[59] LIU D, YANG Z, LI W, et al. Electrochemical intercalation of potassium into graphite in KF melt[J]. Electrochimica Acta, 2010, 55(3):1013-1018.
[60] LUO W, WAN J, OZDEMIR B, et al. Potassium-ion batteries with graphitic materials[J]. Nano Letters, 2015, 15(11):7671-7677.
[61] XING Z, QI Y, JIAN Z, et al. Polynanocrystalline graphite:a new carbon anode with superior cycling performance for K-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(5):4343-4351.
[62] SHARE K, COHN A P, CARTER R, et al. Role of nitrogen doped graphene for improved high capacity potassium-ion battery anodes[J]. ACS Nano, 2016, 10(10):9738-3744.
[63] JU Z C, ZHANG S, XING Z, et al. Direct synthesis of few-layer F-doped graphene foam and its lithium/potassium storage properties[J]. ACS Applied Materials & Interfaces, 2016, 8(32):20682-20690.
[64] MA G, HUANG K, MA J S, et al. Phosphorus and oxygen dual-doped graphene as superior anode material for room-temperature potassium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(17):7854-7861.
[65] JIAN Z, HWANG S, LI Z, et al. Hard-soft composite carbon as a long-cycling and high-rate anode for potassium-ion batteries[J]. Advanced Functional Materials, 2017, 27(26):1700324.
[66] XIE Y, CHEN Y, LIU L, et al. Ultra-high pyridinic N-doped porous carbon monolith enabling high-capacity K-ion battery anodes for both half-cell and full-cell applications[J]. Advanced Materials, 2017, 29(35):1702268.
[67] ADAMS R A, SYU J M, ZHAO Y, et al. Binder-free N-and O-rich carbon nanofiber anodes for long cycle life K-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(21):11872-11881.
[68] ER D, LI J, NAGUIB M, et al. Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries[J]. ACS Appl. Mater. Interfaces, 2014, 6(14):11173-11179.
[69] NAGUIB M, ADAMS R A, ZHAO Y, et al. Electrochemical performance of MXenes as K-ion battery anodes[J]. Chemical Communications, 2017, 53(51):6883-6886.
[70] HAN J, XU M, NIU Y, et al. Exploration of K2Ti8O17 as an anode material for potassium-ion batteries[J]. Chemical Communications, 2016, 52(75):11274-11276.
[71] DONG Y, WU Z S, ZHENG S, et al. Ti3C2 MXene-derived sodium/potassium titanate nanoribbons for high-performance sodium/potassium ion batteries with enhanced capacities[J]. ACS Nano, 2017, 11(5):4792-4800.
[72] REN X, ZHAO Q, MCCULLOCH W D, et al. MoS2 as a long-life host material for potassium ion intercalation[J]. Nano Research, 2017, 10(4):1313-1321.
[73] 叶飞鹏, 王莉, 连芳, 等. 钠离子电池研究进展[J]. 化工进展, 2013, 32(8):1789-1795. YE F P, WANG L, LIAN F, et al. Advance in Na-ion batteries[J]. Chemical Industry and Engineering Progress, 2013, 32(8):1789-1795.
[74] ZHANG W, MAO J, LI S, et al. Phosphorus-based alloy materials for advanced potassium-ion battery anode[J]. Journal of the American Chemical Society, 2017, 139(9):3316-3319.
[75] XUE L, GAO H, ZHOU W, et al. Liquid K-Na alloy anode enables dendrite-free potassium batteries[J]. Advanced Materials, 2016, 28(43):9608-9612.
[76] MOSHKOVICH M, GOFER Y, AURBACH D, et al. Investigation of the electrochemical windows of aprotic alkali metal(Li, Na, K) salt solutions[J]. Journal of the Electrochemical Society, 2001, 148(4):7282-7289.
[77] . CHO E, MUN J, CHAE O B, et al. Corrosion/passivation of aluminum current collector in bis(fluorosulfonyl) imide-based ionic liquid for lithium-ion batteries[J]. Electrochemistry Communications, 2012, 22(1):1-3.
[78] DUGAS R, PONROUCH A, GACHOT G, et al. Na reactivity toward carbonate-based electrolytes:the effect of FEC as additive[J]. Journal of the Electrochemical Society, 2016, 163(10):A2333-A2339. |