化工进展 ›› 2018, Vol. 37 ›› Issue (10): 3699-3725.DOI: 10.16085/j.issn.1000-6613.2018-0314
刘腾飞1, 杨代凤1, 毛健1, 章雪明2, 虞锐鹏3
收稿日期:
2018-02-05
修回日期:
2018-06-15
出版日期:
2018-10-05
发布日期:
2018-10-05
通讯作者:
杨代凤,副研究员,研究方向为农产品质量安全。
作者简介:
刘腾飞(1985-),男,硕士,研究方向为农产品质量安全分析。E-mail:bbliutengfei@163.com。
基金资助:
LIU Tengfei1, YANG Daifeng1, MAO Jian1, ZHANG Xueming2, YU Ruipeng3
Received:
2018-02-05
Revised:
2018-06-15
Online:
2018-10-05
Published:
2018-10-05
摘要: 食品中有害因子的快速高效检测一直是食品安全领域致力解决的重要问题。碳纳米管作为一种新型的纳米碳材料,以其比表面积大、导电性好、吸附性强、易于化学修饰等诸多优良性质在食品安全检测领域得到广泛关注和应用。本文简述了碳纳米管的类型、制备和表征方法,分析了食品中有害因子的种类及其来源,论述了碳纳米管在农药残留、兽药残留、重金属、微生物和毒素、食品添加剂等食品有害因子检测中的应用,并展望了碳纳米管在食品安全分析领域的发展方向。指出将碳纳米管用于食品安全分析极大地促进了食品安全检测方法和技术向高灵敏度、低成本、高效率、快速等方向发展。
中图分类号:
刘腾飞, 杨代凤, 毛健, 章雪明, 虞锐鹏. 碳纳米管材料在食品安全分析中的应用[J]. 化工进展, 2018, 37(10): 3699-3725.
LIU Tengfei, YANG Daifeng, MAO Jian, ZHANG Xueming, YU Ruipeng. Review on the application of carbon nanotubes in food safety analysis[J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3699-3725.
[1] LIJIMA S. Helical microtubes of graphite carbon[J]. Nature, 1991, 354(6348):56-58. [2] DRESSELHAUS M S, DRESSELHAUS G, CHARLIER J C, et al. Electronic, thermal and mechanical properties of carbon nanotubes[J]. Philosophical Transactions of the Royal Society A, 2004, 362(1823):2065-2098. [3] COSTA P M, BOURGOGNON M, WANG J T, et al. Functionalized carbon nanotubes:from intracellular uptake and cell-related toxicity to systemic brain delivery[J]. Journal of Controlled Release, 2016, 241:200-219. [4] LÜ W, DONG J, LI Z Y. Optical properties of aligned carbon nanotube systems studied by the effective-medium approximation method[J]. Physical Review B:Condensed Matter, 2001, 63(3):33-41. [5] ZHOU X, PARK J Y, HUANG S, et al. Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors[J]. Physical Review Letters, 2005, 95(14):146805-1~146805-4. [6] EBBESEN T W, LEZEC H J, HIURA H, et al. Electrical conductivity of individual carbon nanotubes[J]. Nature, 1996, 382(6586):54-56. [7] BERBER S, KWON Y K, TOMÁNEK D. Unusually high thermal conductivity of carbon nanotubes[J]. Physical Review Letters, 2000, 84(20):4613-4616. [8] LIANG J, SUN Z H, LI F, et al. Carbon materials for Li-S batteries:functional evolution and performance improvement[J]. Energy Storage Mater, 2016, 2:76-106. [9] SHAH A, ATES M N, KOTZ S, et al. A layered carbon nanotube architecture for high power lithium ion batteries[J]. Journal of the Electrochemical Society, 2013, 161(6):989-995. [10] HSU M C, LEE G B. Carbon nanotube-based hot-film and temperature sensor assembled by optically-induced dielectrophoresis[J]. IET Nanobiotechnology, 2014, 8(1):44-50. [11] RYU S, LEE P, CHOU J B, et al. Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion[J]. ACS Nano, 2015, 9(6):5929-5236. [12] GILMORE J L, YI X, QUAN L, et al. Novel nanomaterials for clinical neuroscience[J]. J. Neuroimmune Pharmacol., 2008, 3(2):83-94. [13] MCDEVITT M R, CHATTOPADHYAY D, KAPPEL B J, et al. Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes[J]. Journal of Nuclear Medicine, 2007, 48(7):1180-1189. [14] OUEINY C, BERLIOZ S, PERRIN F X. Carbon nanotube-polyaniline composites[J]. Progress in Polymer Science, 2014, 39(4):707-748. [15] NAYAK S, BEHURA S K, BHATTACHARJEE S, et al. Transparent conductive multiwall carbon nanotubes-polymer composite for electrode applications[J]. Journal of Nanoscience and Nanotechnology, 2014, 14(4):2816-2822. [16] 何世伟, 黄忠平, 朱岩. 新型碳纳米管色谱固定相制备的研究进展[J]. 色谱, 2013, 31(12):1146-1153. HE Shiwei, HUANG Zhongping, ZHU Yan. Recent advances in preparation of novel chromatographic stationary phases with carbon nanotubes[J]. Chinese Journal of Chromatography, 2013, 31(12):1146-1153. [17] MARTYNKOVÁ G S, PLACHÁ D, PLEVOVÁ E. Volatile organic molecules sorption onto carbon nanotubes:experiment and molecular modeling[J]. Procedia Materials Science, 2016, 12:142-146. [18] APUL O G, KARANFIL T. Adsorption of synthetic organic contaminants by carbon nanotubes:a critical review[J]. Water Research, 2015, 68:34-55. [19] MUBARAK N M, SAHU J N, ABDULLAH E C, et al. Rapid adsorption of toxic Pb(Ⅱ) ions from aqueous solution using multiwall carbon nanotubes synthesized by microwave chemical vapor deposition technique[J]. Journal of Environmental Sciences, 2016, 45:143-155. [20] SAHIKA Sena Bayazit, ISMAIL Inci. Adsorption of Cu(Ⅱ) ions from water by carbon nanotubes oxidized with UV-light and ultrasonication[J]. Journal of Molecular Liquids, 2014, 199:559-564. [21] 李安, 赵元旭, 冯跃战, 等. 碳纳米管在聚合物基复合材料中分散方法的研究进展[J]. 化工新型材料, 2014, 42(9):7-9. LI An, ZHAO Yuanxu, FENG Yuezhan, et al. Research progress on dispersion method of carbon nanotubes in polymer-based composites[J]. New Chemical Materials, 2014, 42(9):7-9. [22] GEORGAKILAS V, BOURLINOS A, GOURNIS D, et al. Multipurpose organically modified carbon nanotubes:from functionalization to nanotube composites[J]. Journal of the American Chemical Society, 2008, 130(27):8733-8340. [23] GRAUPNER R, ABRAHAM J, WUNDERLICH D, et al. Nucleophilic-alkylation-reoxidation:a functionalization sequence for single-wall carbon nanotubes[J]. Journal of the American Chemical Society, 2006, 128(20):6683-6689. [24] 邓会宁, 杨秀丽, 田明. 功能化碳纳米管/聚合物复合分离膜[J]. 化工进展, 2014, 33(11):3000-3006. DENG Huining, YANG Xiuli, TIAN Ming. Functionalized carbon nanotube/polymer composite membranes for separation[J]. Chemical Industry and Engineering Progress, 2014, 33(11):3000-3006. [25] WANG L, FENG S A, ZHAO J H, et al. A facile method to modify carbon nanotubes with nitro/amino groups[J]. Applied Surface Science, 2010, 256(20):6060-6064. [26] ZHAO Z Y, YANG Z H, HU Y W, et al. Multiple functionalization of multi-walled carbon nanotubes with carboxyl and amino groups[J]. Applied Surface Science, 2013, 276(7):476-481. [27] 李鹏莉, 于树玲, 石家华. 聚多巴胺改性碳纳米管对Pb2+的吸附性能[J]. 河南大学学报(自然科学版), 2014, 44(4):416-420. LI Pengli, YU Shuling, SHI Jiahua. Adsorption performance of polydopamine-modified carbon nanotubes for Pb2+ ions[J]. Journal of Henan University(Natural Science), 2014, 44(4):416-420. [28] HERMANN S, SCHULZE S, ECKE R, et al. Growth of carbon nanotube forests between a bi-metallic catalyst layer and a SiO2, substrate to form a self-assembled carbon-metal heterostructure[J]. Carbon, 2012, 50(13):4765-4772. [29] ZHU H W, XU C L, WU D H, et al. Direct synthesis of long single-walled carbon nanotube strands[J]. Science, 2002, 296(5569):884-886. [30] IRANIFAM M. Analytical applications of chemiluminescence systems assisted by carbon nanostructures[J]. TrAC Trends in Analytical Chemistry, 2015, 80:387-415. [31] LIANG X J, LIU S J, WANG S, et al. Carbon-based sorbents:carbon nanotubes[J]. Journal of Chromatography A, 2014, 1357:53-67. [32] LI J, SU Q, LI K Y, et al. Rapid analysis of phthalates in beverage and alcoholic samples by multi-walled carbon nanotubes/silica reinforced hollow fibre-solid phase microextraction[J]. Food Chemistry, 2013, 141(4):3714-3720. [33] 李文治. 碳纳米管的研究进展[J]. 光学与光电技术, 2016, 14(5):10-15. LI Wenzhi. Research progress of carbon nanotubes[J]. Optics & Optoelectronic Technology, 2016, 14(5):10-15. [34] SAIFUDDIN N. Carbon nanotubes:a review on structure and their interaction with proteins[J]. Journal of Chemistry, 2012, 2013(6348):1-18. [35] MENG L L, SONG T T, MAO X. Novel immunochromatographic assay on cotton thread based on carbon nanotubes reporter probe[J]. Talanta, 2017, 167:379-384. [36] CHOI J, PARK B C, AHN S J, et al. Evaluation of carbon nanotube probes in critical dimension atomic force microscopes[J]. J. Micro/Nanolithogr. MEMS MOEMS, 2016, 15(3):1-32. [37] NIE Q, ZHANG W, WANG L R, et al. Sensitivity enhanced, stability improved ethanol gas sensor based on multi-wall carbon nanotubes functionalized with Pt-Pd nanoparticles[J]. Sensors and Actuators B:Chemical, 2018, 270:140-148. [38] FOTOUHI L, DORRAJI P S, KESHMIRI Y S S, et al. Electrochemical sensor based on nanocomposite of multi-walled carbon nanotubes/TiO2 nanoparticles in chitosan matrix for simultaneous and separate determination of dihydroxybenzene isomers[J]. Journal of the Electrochemical Society, 2018, 165(5):202-211. [39] GHOSH D, GHOSH P, TANEMURA M, et al. Transparent and flexible field emission display device based on single-walled carbon nanotubes[J]. Physica Status Solidi-Rapid Research Letters, 2012, 6(7):303-305. [40] LI D T, CHENG Y J, CAI M, et al. Uniform arrays of carbon nanotubes applied in the field emission devices[J]. Science China(Physics,Mechanics & Astronomy), 2013, 56(11):2081-2084. [41] MURATA Y, YOSHIMOTO S, KISHIDA M, et al. Exploiting metal coating of carbon nanotubes for scanning tunneling microscopy probes[J]. Japanese Journal of Applied Physics, 2005, 44(7B):5336-5338. [42] TOVEE P D, PUMAROL M E, ROSAMOND M C, et al. Nanoscale resolution scanning thermal microscopy using carbon nanotube tipped thermal probes[J]. Physical Chemistry Chemical Physics, 2014, 16(3):1174-1181. [43] JAKUBUS A, PASZKIEWICZ M, STEPNOWSKI P. Carbon nanotubes application in the extraction techniques of pesticides:a review[J]. Critical Reviews in Analytical Chemistry, 2016, 47(1):76-91. [44] XU J, CAO Z, ZHANG Y L, et al. A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water:preparation, application, and mechanism[J]. Chemosphere, 2018, 195:351-364. [45] ZHOU J, CAO J M, ZOU Y Z, et al. MoS2 nanosheets supported on reduced carboxylic multi-walled carbon nanotubes:an advanced catalyst for the hydrogen evolution reaction[J]. Microelectronic Engineering, 2017, 176:89-93. [46] ZHANG Y J, LI X, ZHANG M Y, et al. IrO2 nanoparticles highly dispersed on nitrogen-doped carbon nanotubes as an efficient cathode catalyst for high-performance Li-O2, batteries[J]. Ceramics International, 2017, 43(16):14082-14089. [47] SALEHABADI A, SALAVATI-NIASARI M, GHIYASIYAN-ARANI M. Self-assembly of hydrogen storage materials based multi-walled carbon nanotubes(MWCNTs) and Dy3Fe5O12(DFO) nanoparticles[J]. Journal of Alloys and Compounds, 2018, 745:789-797. [48] KUMAR S, NEHRA M, KEDIA D, et al. Carbon nanotubes:a potential material for energy conversion and storage[J]. Progress in Energy and Combustion Science, 2018, 64:219-253. [49] TSIERKEZOS N G, RITTER U, THAHA Y N, et al. Multi-walled carbon nanotubes doped with boron as an electrode material for electrochemical studies on dopamine, uric acid, and ascorbic acid[J]. Microchimica Acta, 2016, 183(1):35-47. [50] HONG M, GUO W H, SHEN S H, et al. Rational fabrication of carbon nanotubes arrays on porous nickel matrix as advanced electrode materials of supercapacitors[J]. Materials Research Bulletin, 2018, 105:172-177. [51] 陈珑, 孙晓刚, 邱治文, 等. 碳纳米管增强三元材料的电化学性能[J]. 化工进展, 2017, 36(12):4533-4539. CHEN Long, SUN Xiaogang, QIU Zhiwen, et al. Enhancement of electrochemical performance of ternary material by using carbon nanotube as conductive additive[J]. Chemical Industry and Engineering Progress, 2017, 36(12):4533-4539. [52] ZHANG D S, PAN C S, SHI L Y, et al. A highly reactive catalyst for CO oxidation:CeO2 nanotubes synthesized using carbon nanotubes as removable templates[J]. Microporous and Mesoporous Materials, 2009, 117(1/2):193-200. [53] ZHANG Y J, LIU J, HE R R, et al. Synthesis of alumina nanotubes using carbon nanotubes as templates[J]. Chemical Physics Letters, 2002, 360(5/6):579-584. [54] OLOUMI H, MOUSAVI E A, NEJAD R M. Multi-wall carbon nanotubes effects on plant seedlings growth and cadmium/lead uptake in vitro[J]. Russian Journal of Plant Physiology, 2018, 65(2):260-268. [55] WANG X P, ZHOU Z L, CHEN F F. Surface modification of carbon nanotubes with an enhanced antifungal activity for the control of plant fungal pathogen[J]. Materials, 2017, 10(12):1375-1386. [56] TANAKA M, SATO Y, ZHANG M, et al. In vitro and in vivo evaluation of a three-dimensional porous multi-walled carbon nanotube scaffold for bone regeneration[J]. Nanomaterials, 2017, 7(2):46-63. [57] ZAREI M, KARBASI S. Evaluation of the effects of multiwalled carbon nanotubes on electrospun poly(3-hydroxybutirate) scaffold for tissue engineering applications[J]. Journal of Porous Materials, 2018, 25(1):259-272. [58] LI Z, DE BARROS A L B, SOARES D C F, et al. Functionalized single-walled carbon nanotubes:cellular uptake, biodistribution and applications in drug delivery[J]. International Journal of Pharmaceutics, 2017, 524(1/2):41-54. [59] ZERDA A D L, LIU Z, BODAPATI S, et al. Ultra-high sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice[J]. Nano Letters, 2010, 10(6):2168-2172. [60] HONG H, GAO T, CAI W B. Molecular imaging with single-walled carbon nanotubes[J]. Nano Today, 2009, 4(3):252-261. [61] REN X L, LIN J, WANG X F, et al. Photoactivatable RNAi for cancer gene therapy triggered by near-infrared-irradiated single-walled carbon nanotubes[J]. International Journal of Nanomedicine, 2017, 12:7885-7896. [62] SANGINARIO A, MICCOLI B, DEMARCHI D. Carbon nanotubes as an effective opportunity for cancer diagnosis and treatment[J]. Biosensors, 2017, 7(1):9-32. [63] CHAUDHARY K T, ALI J, YUPAPIN P P. Growth of small diameter multi-walled carbon nanotubes by arc discharge process[J]. Chinese Physics B, 2014, 23(3):412-417. [64] MARIA K H, MIENO T. Synthesis of single-walled carbon nanotubes by low-frequency bipolar pulsed arc discharge method[J]. Vacuum, 2015, 113:11-18. [65] BOTA P M, DOROBANTU D, BOERASU I. Synthesis of single-wall carbon nanotubes by excimer laser ablation[J]. Surface Engineering and Applied Electrochemistry, 2014, 50(4):294-299. [66] CHRZANOWSKA J, HOFFMAN J, MATOLEPSZY A, et al. Synthesis of carbon nanotubes by the laser ablation method:effect of laser wavelength[J]. Physica Status Solidi, 2015, 252(8):1860-1867. [67] ZHAO J G, XING B Y, YANG H, et al. Growth of carbon nanotubes on graphene by chemical vapor deposition[J]. New Carbon Materials, 2016, 31(1):31-36. [68] SAHOO S C, MOHAPATRA D R, LEE H J, et al. Carbon nanoflake growth from carbon nanotubes by hot filament chemical vapor deposition[J]. Carbon, 2014, 67(2):704-711. [69] RAJKUMAR K, PALLA S S, PALADUGU A, et al. Carbon nanotubes:a review on preparation techniques and applications in various fields[J]. International Research Journal of Pharmacy, 2013, 4(2):36-44. [70] SHAH K A, TALI B A. Synthesis of carbon nanotubes by catalytic chemical vapour deposition:a review on carbon sources, catalysts and substrates[J]. Materials Science in Semiconductor Processing, 2016, 41:67-82. [71] DRESSELHAUS M S, DRESSELHAUS G, JORIO A. Unusual properties and structure of carbon nanotubes[J]. Annual Review of Materials Research, 2004, 34(1):247-278. [72] 谭和平, 侯晓妮, 孙登峰, 等. 纳米材料的表征与测试方法[J]. 中国测试, 2013, 39(1):8-12. TAN Heping, HOU Xiaoni, SUN Dengfeng, et al. Characterization and meaurement of nanomaterials[J]. China Measurement & Test, 2013, 39(1):8-12. [73] 潘胜东, 陈晓红, 赵永纲, 等. 磁性碳纳米管复合材料的合成及在固相萃取中的应用进展[J]. 化学通报, 2013, 76(12):1067-1075. PAN Shengdong, CHEN Xiaohong, ZHAO Yonggang, et al. Progresses in the synthesis of magnetic carbon nanotube composites and their application in solid phase extraction[J]. Chemistry Bulletin, 2013, 76(12):1067-1075. [74] FAN Y Y, KAUFMANN A, MUKASYAN A, et al. Single-and multi-wall carbon nanotubes produced using the floating catalyst method:synthesis, purification and hydrogen up-take[J]. Carbon, 2006, 44(11):2160-2170. [75] 郑晗, 陈蓉, 胡华亭, 等. 化学功能化修饰碳纳米管的表征方法探究[J]. 胶体与聚合物, 2009, 27(3):37-40. ZHEN Han, CHEN Rong, HU Huating, et al. Study on characterization in functionalizing carbon nanotubes[J]. Chinese Journal of Colloid & Polymer, 2009, 27(3):37-40. [76] SHUIT S H, NG E P, TAN S H. A facile and acid-free approach towards the preparation of sulphonated multi-walled carbon nanotubes as a strong protonic acid catalyst for biodiesel production[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 52:100-108. [77] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 纳米技术多壁碳纳米管表征:GB/T33243-2016[S]. 北京:中国标准出版社, 2017. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republicof China, Standardization administration of the People's Republic of China. Nanotechnologiescharacterization of multiwall carbon nanotube(MWCNT):GB/T33243-2016[S]. Beijing:China Standard Publishing House, 2017. [78] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 纳米技术单壁碳纳米管的热重表征方法:GB/T32868-2016[S]. 北京:中国标准出版社, 2017. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization administration of the People's Republic of China. Nanotechnologiescharacterization of single-wall carbon nanotubes using thermogravimetric analysis:GB/T32868-2016[S]. Beijing:China Standard Publishing House, 2017. [79] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 纳米技术单壁碳纳米管的透射电子显微术表征方法:GB/T30543-2014[S]. 北京:中国标准出版社, 2014. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republicof China, Standardization administration of the People's Republic of China. Nanotechnologiescharacterization of single-wall carbon nanotubes using transmission electron microscopy:GB/T30543-2014[S]. Beijing:China Standard Publishing House, 2014. [80] PAN B, XING B. Adsorption mechanisms of organic chemicals on carbon nanotubes[J]. Environmental Science & Technology, 2008, 42(24):9005-9013. [81] CHEN W, DUAN L, ZHU D Q. Adsorption of polar and nonpolar organic chemicals to carbon nanotubes[J]. Environmental Science & Technology, 2007, 41(24):8295-8300. [82] YANG K, XING B S. Adsorption of organic compounds by carbon nanomaterials in aqueous phase:polanyi theory and its application[J]. Cheminform, 2010, 110(10):5989-6008. [83] XU J, CAO Z, ZHANG Y L, et al. A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water:preparation, application, and mechanism[J]. Chemosphere, 2018, 195:351-364. [84] GADHAVE A, WAGHMARE J. Removal of heavy metal ions from wastewater by carbon nanotubes (CNTs)[J]. International Journal of Engineering Sciences & Research Technology, 2014, 3(7):226-236. [85] 张伟. 碳纳米管吸附有机物研究进展[J]. 湖南城市学院学报(自然科学版), 2009, 18(4):16-18. ZHANG Wei. Research progress in adsorption of organic chemicals on carbon nanotubes[J]. Journal of Hunan City University (Natural Science), 2009, 18(4):16-18. [86] LU C, CHUNG Y L, CHANG K F. Adsorption thermodynamic and kinetic studies of trihalomethanes on multiwalled carbon nanotubes[J]. Journal of Hazardous Materials, 2006, 138(2):304-310. [87] PENG X J, LI Y H, LUAN Z K, et al. Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes[J]. Chemical Physics Letters, 2003, 376(1/2):154-158. [88] GOTOVAC S, YANG C M, HATTORI Y, et al. Adsorption of polyaromatic hydrocarbons on single wall carbon nanotubes of different functionalities and diameters[J]. Journal of Colloid and Interface Science, 2007, 314(1):18-24. [89] LIAO Q, SUN J, GAO L. The adsorption of resorcinol from water using multi-walled carbon nanotubes[J]. Colloids & Surfaces A:Physicochemical and Engineering Aspects, 2008, 312(2):160-165. [90] LIN D H, XING B S. Adsorption of phenolic compounds by carbon nanotubes:role of aromaticity and substitution of hydroxyl groups[J]. Environmental Science & Technology, 2008, 42(19):7254-7259. [91] YANG K, WU W H, JING Q F, et al. Aqueous adsorption of aniline, phenol, and their substitutes by multi-walled carbon nanotubes[J]. Environmental Science & Technology, 2008, 42(21):7931-7936. [92] LU C, CHUNG Y L, CHANG K F. Adsorption of trihalomethanes from water with carbon nanotubes[J]. Water Research, 2005, 39(6):1183-1189. [93] PENG X J, JIA J J, GONG X M, et al. Aqueous stability of oxidized carbon nanotubes and the precipitation by salts[J]. Journal of Hazardous Materials, 2009, 165(1/3):1239-1242. [94] LU C Y, SU F S. Adsorption of natural organic matter by carbon nanotubes[J]. Separation and Purification Technology, 2007, 58(1):113-121. [95] GAO Z, BANDOSZ T J, ZHAO Z, et al. Investigation of factors affecting adsorption of transition metals on oxidized carbon nanotubes[J]. Journal of Hazardous Materials, 2009, 167(1/3):357-365. [96] HAN Y T, SONG L, ZOU N, et al. Multi-residue determination of 171 pesticides in cowpea using modified QuEChERS method with multi-walled carbon nanotubes as reversed-dispersive solid-phase extraction materials[J]. Journal of Chromatography B, 2016, 1031:99-108. [97] HAN Y T, NAN Z, SONG L, et al. Simultaneous determination of 70 pesticide residues in leek, leaf lettuce and garland chrysanthemum using modified QuEChERS method with multi-walled carbon nanotubes as reversed-dispersive solid-phase extraction materials[J]. Journal of Chromatography B, 2015, 1005:56-64. [98] HAN Y T, SONG L, ZOU N, et al. Rapid multiplug filtration cleanup method for the determination of 124 pesticide residues in rice, wheat, and corn[J]. Journal of Separation Science, 2017, 40:878-884. [99] 何亚荟, 王亮, 王静. 多壁碳纳米管-聚醚砜复合膜净化法快速测定食品中15种农药残留[J]. 食品科学, 2017, 38(18):317-324. HE Yahui, WANG Liang, WANG Jing. Determination of 15 pesticide residues in food matrixes by ultra performance liquid chromatography-tandem mass spectrometry after sample cleanup using polyethersulfone(PES)/multiwalled carbon nanotubes (MWCNTs) composite membrane[J]. Food Science, 2017, 38(18):317-324. [100] SU R, LI D, WANG X H, et al. Determination of organophosphorus pesticides in ginseng by carbon nanotube envelope-based solvent extraction combined with ultrahigh-performance liquid chromatography mass spectrometry[J]. Journal of Chromatography B, 2016, 1022:141-152. [101] LI211;PEZ-FERIA S, CI193;RDENAS S, VALCI193;RCEL M. One step carbon nanotubes-based solid-phase extraction for the gas chromatographic-mass spectrometric multiclass pesticide control in virgin olive oils[J]. Journal of Chromatography A, 2009, 1216(43):7346-7350. [102] DENG X J, GUO Q J, CHEN X P, et al. Rapid and effective sample clean-up based on magnetic multiwalled carbon nanotubes for the determination of pesticide residues in tea by gas chromatographymass spectrometry[J]. Food Chemistry, 2014, 145(7):853-858. [103] GAO L, CHEN L G. Preparation of magnetic carbon nanotubes for separation of pyrethroids from tea samples[J]. Microchim Acta, 2013, 180:423-430. [104] GAO L, CHEN L G, LI X W. Magnetic molecularly imprinted polymers based on carbon nanotubes for extraction of carbamates[J]. Microchimica Acta, 2015, 182(3/4):781-787. [105] HSU C W, LIN Z Y, CHAN T Y, et al. Oxidized multiwalled carbon nanotubes decorated with silver nanoparticles for fluorometric detection of dimethoate[J]. Food Chemistry, 2017, 224:353-358. [106] XU X, LONG N, LV J N, et al. Functionalized multiwalled carbon nanotube as dispersive solid-phase extraction materials combined with high-performance liquid chromatography for thiabendazole analysis in environmental and food samples[J]. Food Analytical Methods, 2016, 9(1):30-37. [107] LI M M, LIU X G, DONG F S, et al. Simultaneous determination of cyflumetofen and its main metabolite residues in samples of plant and animal origin using multi-walled carbon nanotubes in dispersive solid-phase extraction and ultrahigh performance liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2013, 1300(2):95-103. [108] HOU X, LEI S R, QIU S T, et al. A multi-residue method for the determination of pesticides in tea using multi-walled carbon nanotubes as a dispersive solid phase extraction absorbent[J]. Food Chemistry, 2014, 153(24):121-129. [109] DU Z, LIU M, LI G K. Novel magnetic SPE method based on carbon nanotubes filled with cobalt ferrite for the analysis of organochlorine pesticides in honey and tea[J]. Journal of Separation Science, 2013, 36(20):3387-3394. [110] GAO L, CHEN L G. Preparation of magnetic carbon nanotubes for separation of pyrethroids from tea samples[J]. Microchimica Acta, 2013, 180(5/6):423-430. [111] SU R, XU X, WANG X H, et al. Determination of organophosphorus pesticides in peanut oil by dispersive solid phase extraction gas chromatography-mass spectrometry[J]. Journal of Chromatography B, 2011, 879(30):3423-3428. [112] WU F, LU W P, CHEN J H, et al. Single-walled carbon nanotubes coated fibers for solid-phase microextraction and gas chromatography-mass spectrometric determination of pesticides in tea samples[J]. Talanta, 2010, 82(3):1038-1043. [113] WU C X, LIU Y, WU Q H, et al. Combined use of liquid-liquid microextraction and carbon nanotube reinforced hollow fiber microporous membrane solid-phase microextraction for the determination of triazine herbicides in water and milk samples by high-performance liquid chromatography[J]. Food Analytical Methods, 2012, 5(3):540-550. [114] SONG X Y, SHI Y P, CHEN J. Carbon nanotubes-reinforced hollow fibre solid-phase microextraction coupled with high performance liquid chromatography for the determination of carbamate pesticides in apples[J]. Food Chemistry, 2013, 139(1/4):246-252. [115] GUAN S X, YU Z G, YU H N, et al. Multi-walled carbon nanotubes as matrix solid-phase dispersion extraction adsorbent for simultaneous analysis of residues of nine organophosphorus pesticides in fruit and vegetables by rapid resolution LC-MS-MS[J]. Chromatographia, 2011, 73(1/2):33-41. [116] RAVELO-PI201;REZ L M, HERNI193;NDEZ-BORGES J, RODRI205;GUEZDELGADO M A. Multi-walled carbon nanotubes as efficient solid-phase extraction materials of organophosphorus pesticides from apple, grape, orange and pineapple fruit juices[J]. Journal of Chromatography A, 2008, 1211(1/2):33-42. [117] 荣杰峰, 韦航, 李亦军, 等. 羟基化多壁碳纳米管分散固相萃取-气相色谱-质谱法测定茶叶中21种有机磷农药[J]. 色谱, 2016, 34(2):194-201. RONG Jiefeng, WEI Hang, LI Yijun, et al. Determination of 21 organophosphorus pesticides in tea by gas chromatography-mass spectrometry coupled with hydroxylated multi-walled carbon nanotubes based on dispersive solid-phase extraction[J]. Chinese Journal of Chromatography, 2016, 34(2):194-201. [118] WU Y L, CHEN R X, ZHU Y, et al. Simultaneous determination of sixteen amide fungicides in vegetables and fruits by dispersive solid phase extraction and liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography B, 2015, 989:11-20. [119] WU M, WANG L Y, ZENG B Z, et al. Ionic liquid polymer functionalized carbon nanotubes-doped poly(3,4-ethylenedioxythiophene) for highlyefficient solid-phase microextraction of carbamate pesticides[J]. Journal of Chromatography A, 2016, 1444:42-49. [120] 荣杰峰, 韦航, 黄伙水, 等. 羟基化多壁碳纳米管分散固相萃取/气相色谱-质谱测定茶叶中有机氯农药和拟除虫菊酯类农药残留[J]. 分析测试学报, 2016, 35(1):8-15. RONG Jiefeng, WEI Hang, HUANG Huoshui, et al. Determination of organochlorine and pyrethroid pesticides in tea by gas chromatography-mass spectrometry using hydroxylated multi-walled carbon nanotubes as dispersive solid-phase extraction sorbent[J]. Journal of Instrumental Analysis, 2016, 35(1):8-15. [121] ZHAO P Y, WANG L, LUO J H, et al. Determination of pesticide residues in complex matrices using multi-walled carbon nanotubes as reversed-dispersive solid-phase extraction sorbent[J]. Journal of Separation Science, 2012, 35(1):153-158. [122] QIN Y H, HUANG B Y, ZHANG J R, et al. Analytical method for 44 pesticide residues in spinach using multi-plug-filtration cleanup based on multiwalled carbon nanotubes with liquid chromatography and tandem mass spectrometry detection[J]. Journal of Separation Science, 2016, 39(9):1757-1765. [123] HAN Y T, ZOU N, SONG L, et al. Simultaneous determination of 70 pesticide residues in leek, leaf lettuce and garland chrysanthemum using modified QuEChERS method with multi-walled carbon nanotubes as reversed-dispersive solid-phase extraction materials[J]. Journal of Chromatography B, 2015, 1005:56-64. [124] ZHAO P Y, WANG L, ZHOU L, et al. Multi-walled carbon nanotubes as alternative reversed-dispersive solid phase extraction materials in pesticide multi-residue analysis with QuEChERS method[J]. Journal of Chromatography A, 2012, 1225(1588):17-25. [125] ZHAO P Y, WANG L, JIANG Y P, et al. Dispersive cleanup of acetonitrile extracts of tea samples by mixed multiwalled carbon nanotubes, primary secondary amine, and graphitized carbon black sorbents[J]. Journal of Agricultural and Food Chemistry, 2012, 60(16):4026-4033. [126] ZHAO P Y, FAN S F, YU C S, et al. Multiplug filtration clean-up with multiwalled carbon nanotubes in the analysis of pesticide residues using LC-ESI-MS/MS[J]. Journal of Separation Science, 2013, 36(20):3379-3386. [127] ZHAO P Y, HUANG B Y, LI Y J, et al. Rapid multiplug filtration cleanup with multiple-walled carbon nanotubes and gas chromatography-triple-quadruple mass spectrometry detection for 186 pesticide residues in tomato and tomato products[J]. Journal of Agricultural and Food Chemistry, 2014, 62(17):3710-3725. [128] FAN S F, ZHAO P Y, YU C S, et al. Simultaneous determination of 36 pesticide residues in spinach and cauliflower by LC-MS/MS using multi-walled carbon nanotubes-based dispersive solid-phase clean-up[J]. Food Additives and Contaminants, 2014, 31(1):73-82. [129] ZHAO L W, ZHANG L, LIU F M, et al. Multiresidue analysis of 16 pesticides in jujube using gas chromatography and mass spectrometry with multiwalled carbon nanotubes as a sorbent[J]. Journal of Separation Science, 2014, 37(22):3362-3369. [130] 赵暮雨, 韩芳, 孙锦文, 等. 多壁碳纳米管作为吸附剂的QuEChERS-气相色谱-四极杆飞行时间质谱快速筛查淡水产品中145种农药残留[J]. 分析测试学报, 2016, 35(12):1513-1520. ZHAO Muyu, HAN Fang, SUN Jinwen, et al. Rapid screening of 145 pesticide residues in limnetic products by gas chromatography-quadrupole time of flight mass spectrometry and QuEChERS with multi-walled carbon nanotubes[J]. Journal of Instrumental Analysis, 2016, 35(12):1513-1520. [131] 李婵君, 王毅红, 王彦超, 等. QuEChERS前处理联合UPLC-MS/MS法检测花生中22种农药残留[J]. 化学分析计量, 2017, 26(1):33-37. LI Chanjun, WANG Yihong, WANG Yanchao, et al. Determination of 22 pesticide residues in peanut by QuEChERS-UPLC-MS/MS[J]. Chemical Analysis and Meterage, 2017, 26(1):33-37. [132] 张帆, 白珊, 王美玲, 等. MWCNT-分散固相萃取-气相色谱-串联质谱法检测茶油中11种有机磷农药残留[J]. 湖南师范大学自然科学学报, 2017, 40(2):49-55. ZHANG Fan, BAI Shan, WANG Meiling, et al. Determination of 11 organophosphorus pesticide residues in camellia oil by gas chromatography-tandem mass spectrometry with dispersive solid-phase extraction using multiwalled carbon nanotubes as adsorbent[J]. Journal of Natural Science of Hunan Normal University, 2017, 40(2):49-55. [133] 赵海香, 贾艳霞, 丁明玉, 等. 多壁碳纳米管固相萃取净化气相色谱法分析蔬菜中有机氯和拟除虫菊酯农药残留[J]. 色谱, 2011, 29(5):443-449. ZHAO Haixiang, JIA Yanxia, DING Mingyu, et al. Analysis of organochlorine pesticides and pyrethroid pesticides in vegetables by gas chromatography-electron capture detection coupled with solid-phase extraction using multiwalled carbon nanotubes as adsorbent[J]. Chinese Journal of Chromatography, 2011, 29(5):443-449. [134] 彭晓俊, 庞晋山, 邓爱华, 等. 改性多壁碳纳米管固相萃取-高效液相色谱法测定农产品中痕量残留的4种有机氯农药[J]. 色谱, 2012, 30(9):966-970. PENG Xiaojun, PANG Jinshan, DENG Aihua, et al. Determination of the trace residues of four organochlorine pesticides in agricultural products by high performance liquid chromatography with modified multi-walled carbon nanotubes as solid phase extraction adsorbent[J]. Chinese Journal of Chromatography, 2012, 30(9):966-970. [135] CHEN H P, YIN P, WANG Q H, et al. A modified QuEChERS sample preparation method for the analysis of 70 pesticide residues in tea using gas chromatography-tandem mass spectrometry[J]. Food Analytical Methods, 2014, 7(8):1577-1587. [136] 孙梦园, 石志红, 李建勋, 等. 分散固相萃取-分散液液微萃取结合气相色谱-三重四极杆质谱法测定茶叶中7种拟除虫菊酯类农药残留[J]. 分析测试学报, 2017, 36(5):595-600. SUN Mengyuan, SHI Zhihong, LI Jianxun, et al. Determination of 7 pyrethroid pesticide residues in tea by gas chromatography-triple quadrupole mass spectrometry combined with dispersive solid-phase extraction and dispersive liquid-liquid microextraction[J]. Journal of Instrumental Analysis, 2017, 36(5):595-600. [137] HAO H H, CHENG G Y, IQBAL Z, et al. Benefits and risks of antimicrobial use in food-producing animals[J]. Frontiers in Microbiology, 2014, 5(7):288-295. [138] HOU X L, WU Y L, YANG T, et al. Multi-walled carbon nanotubes-dispersive solid-phase extraction combined with liquid chromatography-tandem mass spectrometry for the analysis of 18 sulfonamides in pork[J]. Journal of Chromatography B, 2013, 929:107-115. [139] ZHANG Z H, YANG X, ZHANG H B, et al. Novel molecularly imprinted polymers based on multi-walled carbon nanotubes with binary functional monomer for the solid-phase extraction of erythromycin from chicken muscle[J]. Journal of Chromatography B, 2011, 879(19):1617-1624. [140] XU J J, AN M R, YANG R, et al. Determination of tetracycline antibiotic residues in honey and milk by miniaturized solid phase extraction using chitosan-modified graphitized multiwalled carbon nanotubes[J]. Journal of Agricultural and Food Chemistry, 2016, 64(12):2647-2654. [141] SU R, WANG X H, XU X, et al. Application of multiwall carbon nanotubes-based matrix solid phase dispersion extraction for determination of hormones in butter by gas chromatography mass spectrometry[J]. Journal of Chromatography A, 2011, 1218(31):5047-5054. [142] LIU Y X, JIAN G Q, HE X W, et al. Preparation and application of core-shell structural carbon nanotubes-molecularly imprinted composite material for determination of nafcillin in egg samples[J]. Chinese Journal of Analytical Chemistry, 2013, 41(2):161-166. [143] 徐潇颖, 罗金文, 陈万勤, 等. 磁性多壁碳纳米管固相萃取/高效液相色谱-串联质谱法测定蜂蜜中多组分兽药残留[J]. 分析测试学报, 2017, 36(1):61-66. XU Xiaoying, LUO Jinwen, CHEN Wanqin, et al. Determination of veterinary drugs residues in honey by high performance liquid chromatography-tandem mass spectrometry with magnetic multi-walled carbon nanotubes[J]. Journal of Instrumental Analysis, 2017, 36(1):61-66. [144] 刘柱, 金绍强, 王展华, 等. 磁性修饰多壁碳纳米管固相萃取快速测定牛奶中20种激素残留[J]. 分析试验室, 2017, 36(8):904-909. LIU Zhu, JIN Shaoqiang, WANG Zhanhua, et al. Simultaneous determination of twentyhormonesin milk by UHPLC-MS/MS and magnetic multi-walled carbon nanotubes cleaning[J]. Chinese Journal of Analysis Laboratory, 2017, 36(8):904-909. [145] LU Y B, SHEN Q, DAI Z Y, et al. Multi-walled carbon nanotubes as solid-phase extraction adsorbent for the ultra-fast determination of chloramphenicol in egg, honey, and milk by fused-core C18-based high-performance liquid chromatography-tandem mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2010, 398(4):1819-1826. [146] ZHAO Y R, BI C F, HE X W, et al. Preparation of molecularly imprinted polymers based on magnetic carbon nanotubes for determination of sulfamethoxazole in food samples[J]. RSC Advances, 2015, 5(86):70309-70318. [147] ZHAO H X, WANG L P, QIU Y M, et al. Multiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of three barbiturates in pork by ion trap gas chromatography-tandem mass spectrometry(GC/MS/MS) following microwave assisted derivatization[J]. Analytica Chimica Acta, 2007, 586(1/2):399-406. [148] POLO-LUQUE M L, SIMONET B M, VALCI193;RCEL M. Solid phase extraction-capillary electrophoresis determination of sulphonamide residues in milk samples by use of C18-carbon nanotubes as hybrid sorbent materials[J]. Analyst, 2013, 138(13):3786-3791. [149] DING J, GAO Q, LI X S, et al. Magnetic solid-phase extraction based on magnetic carbon nanotube for the determination of estrogens in milk[J]. Journal of Separation Science, 2011, 34(18):2498-2504. [150] WANG L P, ZHAO H X, QIU Y M, et al. Determination of four benzodiazepine residues in pork using multiwalled carbon nanotube solid-phase extraction and gas chromatography-mass spectrometry[J]. Journal of Chromatography A, 2006, 1136(1):99-105. [151] XU Y, DING J, CHEN H Y, et al. Fast determination of sulfonamides from egg samples using magnetic multiwalled carbon nanotubes as adsorbents followed by liquid chromatography-tandem mass spectrometry[J]. Food Chemistry, 2013, 140(1/2):83-90. [152] 顾蓓乔, 梅光明, 张小军, 等. 多壁碳纳米管净化-超高效液相色谱-质谱法测定水产品中头孢菌素残留量[J]. 分析化学, 2017, 45(3):381-388. GU Beiqiao, MEI Guangming, ZHANG Xiaojun, et al. Determination of 8 kinds of cephalosporins in aquatic products by multi-walled carbon nanotubes solid phase extraction-ultra high performance liquid chromatography-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2017, 45(3):381-388. [153] 赵海香, 刘海萍, 闫早婴. 多壁碳纳米管固相萃取净化-高效液相色谱法测定猪肉和鸡肉中的磺胺多残留[J]. 色谱, 2014, 32(3):294-298. ZHAO Haixiang, LIU Haiping, YAN Zaoying. Analysis of sulfonamide residues in pork and chicken by high performance liquid chromatography coupled with solid-phase extraction using multiwalled carbon nanotubes as adsorbent[J]. Chinese Journal of Chromatography, 2014, 32(3):294-298. [154] FANG G Z, HE J X, WANG S. Multiwalled carbon nanotubes as sorbent for on-line coupling of solid-phase extraction to high-performance liquid chromatography for simultaneous determination of 10 sulfonamides in eggs and pork[J]. Journal of Chromatography A, 2006, 1127(1/2):12-17. [155] 曹慧, 陈小珍, 朱岩, 等. 多壁碳纳米管净化-超高效液相色谱-串联质谱技术同时测定牛奶中青霉素类药物残留[J]. 质谱学报, 2015, 36(1):23-28. CAO Hui, CHEN Xiaozhen, ZHU Yan, et al. Determination of penicillin residues in milk by multiwalled carbon nanotubes cleaning and UPLC-MS/MS[J]. Journal of Chinese Mass Spectrometry Society, 2015, 36(1):23-28. [156] 赵海香, 孙艳红, 丁明玉, 等. 多壁碳纳米管净化/超高效液相色谱串联质谱同时测定动物组织中四环素与喹诺酮多残留[J]. 分析测试学报, 2011, 30(6):635-639. ZHAO Haixiang, SUN Yanhong, DING Mingyu, et al. Simultaneous determination of tetracyclines and quinolones residues in animal tissue by ultra performance liquid chromatography-tandem mass spectrometry and multiwalled carbon nanotubes cleaning[J]. Journal of Instrumental Analysis, 2011, 30(6):635-639. [157] 曹慧, 陈小珍, 朱岩, 等. 多壁碳纳米管固相萃取技术同时测定蜂蜜中多类兽药残留[J]. 高等学校化学学报, 2013, 34(12):2710-2715. CAO Hui, CHEN Xiaozhen, ZHU Yan, et al. Simultaneous determination of multi-veterinary drug residues in honey by ultra performance liquid chromatography-tandem mass spectrometry and multiwalled carbon nanotubes cleaning[J]. Chemical Journal of Chinese Universities, 2013, 34(12):2710-2715. [158] TUZEN M, SAYGI K O, SOYLAK M. Solid phase extraction of heavy metal ions in environmental samples on multiwalled carbon nanotubes[J]. Journal of Hazardous Materials, 2008, 152(2):632-639. [159] WANG J P, MA X X, FANG G Z, et al. Preparation of iminodiacetic acid functionalized multi-walled carbon nanotubes and its application as sorbent for separation and preconcentration of heavy metal ions[J]. Journal of Hazardous Materials, 2011, 186(2/3):1985-1992. [160] GHORBANI-KALHOR E, BEHBAHANI M, ABOLHASANI J, et al. Synthesis and characterization of modified multiwall carbon nanotubes with poly(N-Phenylethanolamine) and their application for removal and trace detection of lead ions in food and environmental samples[J]. Food Analytical Methods, 2015, 8(5):1326-1334. [161] GHAEDI M, MONTAZEROZOHORI M, TABATABIE M, et al. Comparison of activated carbon and oxidized multiwalled carbon nanotubes modified with bis(3-nitrobenzylidene)-1,2-ethanediamine for enrichment of trace amounts of some metal ions[J]. Journal of AOAC International, 2012, 95(6):1761-1767. [162] DAI B Y, CAO M R, FANG G Z, et al. Schiff base-chitosan grafted multiwalled carbon nanotubes as a novel solid-phase extraction adsorbent for determination of heavy metal by ICP-MS[J]. Journal of Hazardous Materials, 2012, 219/220(6):103-110. [163] SWEILEH J A, MISEF K Y, EL-SHEIKH A H, et al. Development of a new method for determination of aluminum(Al) in Jordanian foods and drinks:solid phase extraction and adsorption of Al3+-D-mannitol on carbon nanotubes[J]. Journal of Food Composition and Analysis, 2014, 33(1):6-13. [164] WADHWA S K, TUZEN M, KAZI T G, et al. Graphite furnace atomic absorption spectrometric detection of vanadium in water and food samples after solid phase extraction on multiwalled carbon nanotubes[J]. Talanta, 2013, 116(22):205-209. [165] GHAEDI M, MOKHTARI P, MONTAZEROZOHORI M, et al. Multiwalled carbon nanotube impregnated with bis (5-bromosalicylidene)-1,3-propandiamine for enrichment of Pb2+ ion[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(2):638-643. [166] REZVANI M, EBRAHIMZADEH H, ALIAKBARI A, et al. Novel modified carbon nanotubes as a selective sorbent for preconcentration and determination of trace copper ions in fruit samples[J]. Journal of Separation Science, 2014, 37(18):2559-2565. [167] ABOUFAZELI F, ZHAD H R, SADEGHI O, et al. Novel Cd(Ⅱ) ion imprinted polymer coated on multiwall carbon nanotubes as a highly selective sorbent for cadmium determination in food samples[J]. Journal of AOAC International, 2014, 97(1):173-178. [168] SOYLAK M, TOPALAK Z. Multiwalled carbon nanotube impregnated with tartrazine:solid phase extractant for Cd(Ⅱ) and Pb(Ⅱ)[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(2):581-585. [169] CHEN S Z, ZHU L, CHEN X L, et al. Simultaneous determination of Mn(Ⅱ) and Mn(Ⅶ) by single-wall carbon nanotubes preconcentration hyphenated with ICP-MS[J]. Atomic Spectroscopy, 2011, 32(1):12-16. [170] ES'HAGHI Z, KHALILI M, KHAZAEIFAR A, et al. Simultaneous extraction and determination of lead, cadmium and copper in rice samples by a new pre-concentration technique:hollow fiber solid phase microextraction combined with differential pulse anodic stripping voltammetry[J]. Electrochimica Acta, 2011, 56(9):3139-3146. [171] GHAEDI M, MONTAZEROZOHORI M, RAHIMI N, et al. Chemically modified carbon nanotubes as efficient and selective sorbent for enrichment of trace amount of some metal ions[J]. Journal of Industrial and Engineering Chemistry, 2013, 19(5):1477-1482. [172] ZELADA-GUILLI201;N G A, BHOSALE S V, RIU J, et al. Real-time potentiometric detection of bacteria in complex samples[J]. Analytical Chemistry, 2010, 82(22):9254-9260. [173] 杨华, 徐霞红, 郭玉娜, 等. 基于MOCPs-MWCNTs的大肠杆菌电化学免疫传感器[J]. 农业机械学报, 2017, 48(6):328-333. YANG Hua, XU Xiahong, GUO Yuna, et al. Electrochemical immunosensor assay(EIA) of E. coli O157:H7 based on MOCPsMWCNTs with highly efficient antibody immobilization[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(6):328-333. [174] DONG J, ZHAO H, XU M R, et al. A label-free electrochemical impedance immunosensor based on AuNPs/PAMAM-MWCNT-Chi nanocomposite modified glassy carbon electrode for detection of Salmonella typhimurium, in milk[J]. Food Chemistry, 2013, 141(3):1980-1986. [175] SOCAS-RODRI205;GUEZ B, GONZI193;LEZ-SI193;LAMO J, HERNI193;NDEZBORGES J, et al. Application of multiwalled carbon nanotubes as sorbents for the extraction of mycotoxins in water samples and infant milk formula prior to high performance liquid chromatography mass spectrometry analysis[J]. Electrophoresis, 2016, 37(10):1359-1366. [176] DONG M F, SI W S, JIANG K Q, et al. Multi-walled carbon nanotubes as solid-phase extraction sorbents for simultaneous determination of type A trichothecenes in maize, wheat and rice by ultra-high performance liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2015, 1423:177-182. [177] HAN Z, JIANG K Q, FAN Z C, et al. Multi-walled carbon nanotubes-based magnetic solid-phase extraction for the determination of zearalenone and its derivatives in maize by ultra-high performance liquid chromatography-tandem mass spectrometry[J]. Food Control, 2017, 79:177-184. [178] YANG X X, ZHOU X P, ZHANG X, et al. A highly sensitive electrochemical immunosensor for fumonisin B1 detection in corn using single-walled carbon nanotubes/chitosan[J]. Electroanalysis, 2016, 27(11):2679-2687. [179] PANINI N V, BERTOLINO F A, SALINAS E, et al. Zearalenone determination in corn silage samples using an immunosensor in a continuous-flow/stopped-flow systems[J]. Biochemical Engineering Journal, 2010, 51:7-13. [180] YANG M H, KOSTOV Y, RASOOLY A. Carbon nanotubes based optical immunodetection of Staphylococcal Enterotoxin B(SEB) in food[J]. International Journal of Food Microbiology, 2008, 127(1):78-83. [181] ZHANG X, LI C R, WANG W C, et al. A novel electrochemical immunosensor for highly sensitive detection of aflatoxin B1 in corn using single-walled carbon nanotubes/chitosan[J]. Food Chemistry, 2016, 192:197-202. [182] YU L L, ZHANG Y, HU C Y, et al. Highly sensitive electrochemical impedance spectroscopy immunosensor for the detection of AFB1, in olive oil[J]. Food Chemistry, 2015, 176:22-26. [183] ZHANG Y, ZHANG X J, LU X H, et al. Multi-wall carbon nanotube film-based electrochemical sensor for rapid detection of Ponceau 4R and Allura Red[J]. Food Chemistry, 2010, 122(3):909-913. [184] WANG M L, GAO Y Q, SUN Q, et al. Ultrasensitive and simultaneous determination of the isomers of Amaranth and Ponceau 4R in foods based on new carbon nanotube/polypyrrole composites[J]. Food Chemistry, 2015, 172:873-879. [185] GAN T, LI K, WU K B. Multi-wall carbon nanotube-based electrochemical sensor for sensitive determination of SudanⅠ[J]. Sensors and Actuators B, 2008, 132(1):134-139. [186] CHAILAPAKUL O, WONSAWAT W, SIANGPROH W, et al. Analysis of Sudan Ⅰ, Sudan Ⅱ, Sudan Ⅲ, and Sudan Ⅳ in food by HPLC with electrochemical detection:comparison of glassy carbon electrode with carbon nanotube-ionic liquid gel modified electrode[J]. Food Chemistry, 2008, 109(4):876-882. [187] ELYASI M, KHALILZADEH M A, KARIMI-MALEH H. High sensitive voltammetric sensor based on Pt/CNTs nanocomposite modified ionic liquid carbon paste electrode for determination of Sudan Ⅰ in food samples[J]. Food Chemistry, 2013, 141(4):4311-4317. [188] XU X, ZHANG M H, WANG L L, et al. Determination of Rhodamine B in food using ionic liquid-coated multiwalled carbon nanotube-based ultrasound-assisted dispersive solid-phase microextraction followed by high-performance liquid chromatography[J]. Food Analytical Methods, 2016, 9(6):1696-1705. [189] LIU Z, ZHOU Y K, WANG Y Y, et al. Enhanced oxidation and detection of toxic ractopamine using carbon nanotube film-modified electrode[J]. Electrochimica Acta, 2012, 74:139-144. [190] HE P L, WANG Z Y, ZHANG L Y, et al. Development of a label-free electrochemical immunosensor based on carbon nanotube for rapid determination of clenbuterol[J]. Food Chemistry, 2009, 112(3):707-714. [191] 李海芳, 杨红云, 张英, 等. 四氧化三铁/单壁碳纳米管磁性复合纳米粒子分散固相微萃取-高效液相色谱法测定牛奶中的香精添加剂[J]. 色谱, 2014, 32(4):413-418. LI Haifang, YANG Hongyun, ZHANG Ying, et al. Dispersive solid phase microextraction of vanillins in milk using magnetic nanoparticles of ferroferric oxide/carbon nanotubes combining with high performance liquid chromatography analysis[J]. Chinese Journal of Chromatography, 2014, 32(4):413-418. [192] ZHANG M L, HUANG D K, CAO Z, et al. Determination of trace nitrite in pickled food with a nano-composite electrode by electrodepositing ZnO and Pt nanoparticles on MWCNTs substrate[J]. LWT-Food Science and Technology, 2015, 64(2):663-670. [193] DU X W, LI S C, GAN N, et al. Multi-walled carbon nanotube modified dummy-template magnetic molecularly imprinted microspheres as solid-phase extraction material for the determination of polychlorinated biphenyls in fish[J]. Journal of Separation Science, 2014, 37:1591-1600. [194] ZHAO Q, WEI F, LUO Y B, et al. Rapid magnetic solid-phase extraction based on magnetic multiwalled carbon nanotubes for the determination of polycyclic aromatic hydrocarbons in edible oils[J]. Journal of Agricultural and Food Chemistry, 2011, 59(24):12794-12800. [195] MOAZZEN M, AHMADKHANIHA R, GORJI M E, et al. Magnetic solid-phase extraction based on magnetic multi-walled carbon nanotubes for the determination of polycyclic aromatic hydrocarbons in grilled meat samples[J]. Talanta, 2013, 115(17):957-965. [196] 李晓敏, 王景, 张庆合, 等. 食品中邻苯二甲酸酯类化合物的分析方法研究进展[J]. 色谱, 2015, 33(11):1147-1154. LI Xiaomin, WANG Jing, ZHANG Qinghe, et al. Advances on the development of detection methods for the phthalate esters in food[J]. Chinese Journal of Chromatography, 2015, 33(11):1147-1154. [197] 张帆, 李忠海, 张莹, 等. 单壁碳纳米管固相萃取-气相色谱-质谱联用法测定茶油中6种邻苯二甲酸酯[J]. 色谱, 2014, 32(7):735-740. ZHANG Fan, LI Zhonghai, ZHANG Ying, et al. Determination of six phthalate acid esters in camellia oil by gas charomatographymass spectrometry coupled with solid-phase extraction using single-walled carbon nanotubes as adsorbent[J]. Chinese Journal of Chromatography, 2014, 32(7):735-740. |
[1] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[2] | 高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676. |
[3] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[4] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[5] | 李润蕾, 王子彦, 王志苗, 李芳, 薛伟, 赵新强, 王延吉. CuO-CeO2/TiO 2 高效催化CO低温氧化反应性能[J]. 化工进展, 2023, 42(8): 4264-4274. |
[6] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[7] | 尹新宇, 皮丕辉, 文秀芳, 钱宇. 特殊浸润性材料在防治油气管道中水合物成核与聚集的应用[J]. 化工进展, 2023, 42(8): 4076-4092. |
[8] | 储甜甜, 刘润竹, 杜高华, 马嘉浩, 张孝阿, 王成忠, 张军营. 有机胍催化脱氢型RTV硅橡胶的制备和可降解性能[J]. 化工进展, 2023, 42(7): 3664-3673. |
[9] | 徐沛瑶, 陈标奇, KANKALA Ranjith Kumar, 王士斌, 陈爱政. 纳米材料用于铁死亡联合治疗的研究进展[J]. 化工进展, 2023, 42(7): 3684-3694. |
[10] | 鲁少杰, 刘佳, 冀芊竹, 李萍, 韩月阳, 陶敏, 梁文俊. 硅藻土基复合填料制备及滴滤塔去除二甲苯的性能[J]. 化工进展, 2023, 42(7): 3884-3892. |
[11] | 俞俊楠, 俞建峰, 程洋, 齐一搏, 化春键, 蒋毅. 基于深度学习的变宽度浓度梯度芯片性能预测[J]. 化工进展, 2023, 42(7): 3383-3393. |
[12] | 龚鹏程, 严群, 陈锦富, 温俊宇, 苏晓洁. 铁酸钴复合碳纳米管活化过硫酸盐降解铬黑T的性能及机理[J]. 化工进展, 2023, 42(7): 3572-3581. |
[13] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
[14] | 杨家添, 唐金铭, 梁恣荣, 黎胤宏, 胡华宇, 陈渊. 新型淀粉基高吸水树脂抑尘剂的制备及其应用[J]. 化工进展, 2023, 42(6): 3187-3196. |
[15] | 陈怡欣, 甄摇摇, 陈瑞浩, 吴继伟, 潘丽美, 姚翀, 罗杰, 卢春山, 丰枫, 王清涛, 张群峰, 李小年. 铂基纳米催化剂的制备及在加氢领域的进展[J]. 化工进展, 2023, 42(6): 2904-2915. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |