[1] TOMOHISA H, FUMIYOSHI O, NAOKO O, et al. A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology[J]. Bioresource Technology, 2013, 135(39):513-522.
[2] MOSIER N, WYMAN C, DALE B, et al. Features of promising technologies for pretreatment of lignocellulosic biomass[J]. Bioresource Technology, 2005, 96(6):673.
[3] 李江, 谢天文, 刘晓风. 木质纤维素生产燃料乙醇的糖化发酵工艺研究进展[J]. 化工进展, 2011, 30(2):284-291. LI Jiang, XIE Tianwen, LIU Xiaofeng. Technologies of saccharification and fermentation for fuel ethanol from lignocellulosic materials[J]. Chemical Industry and Engineering Progress, 2011, 30(2):284-291.
[4] VAN ZYL W H, LYND L R, DEN HAAN R, et al. Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae[M]//Biofuels. Berlin Heidelberg:Springer, 2007:205-235.
[5] GUO L, ZHANG J, HU F, et al. Consolidated bioprocessing of highly concentrated Jerusalem artichoke tubers for simultaneous saccharification and ethanol fermentation[J]. Biotechnology and Bioengineering, 2013, 110(10):2606-2615.
[6] RAFTERY J P, KARIM M N. Economic viability of consolidated bioprocessing utilizing multiple biomass substrates for commercial-scale cellulosic bioethanol production[J]. Biomass and Bioenergy, 2017, 103:35-46.
[7] BROWN T R, BROWN R C, ESTES V. Commercial-scale production of lignocellulosic biofuels[J]. Chemical Engineering Progress, 2015, 111(3):62-64.
[8] 胡徐腾. 纤维素乙醇研究开发进展[J]. 化工进展, 2011, 30(1):137-143. HU Xuteng. Progress of cellulose ethanol research & development[J]. Chemical Industry and Engineering Progress, 2011, 30(1):137-143.
[9] 李心利, 朱玉红, 汪保卫, 等. 一体化生物加工过程生产乙醇的研究进展[J]. 化工进展, 2016, 35(11):3600-3610. LI Xinli, ZHU Yuhong, WANG Baowei, et al. Progress in bioethanol production via consolidated bioprocessing[J]. Chemical Industry and Engineering Progress, 2016, 35(11):3600-3610.
[10] VAN ZYL W H, DEN HAAN R, LA GRANGE D C. Developing cellulolytic organisms for consolidated bioprocessing of lignocellulosics[M]//Biofuel Technologies. Berlin Heidelberg:Springer, 2013:189-220.
[11] XU Q, SINGH A, HIMMEL M E. Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose[J]. Current Opinion in Biotechnology, 2009, 20(3):364-371.
[12] AMORE A, FARACO V. Potential of fungi as category Ⅰ Consolidated BioProcessing organisms for cellulosic ethanol production[J]. Renewable and Sustainable Energy Reviews, 2012, 16(5):3286-3301.
[13] HOSSAIN S K M. Bioethanol fermentation from non-treated and pretreated corn stover using Aspergillus oryzae[J]. Chemical Engineering Research Bulletin, 2013, 16(1):33-44.
[14] ALI S S, NUGENT B, MULLINS E, et al. Fungal-mediated consolidated bioprocessing:the potential of Fusarium oxysporum for the lignocellulosic ethanol industry[J]. AMB Express, 2016, 6(1):1-13.
[15] XU J, WANG X, HU L, et al. A novel ionic liquid-tolerant Fusarium oxysporum BN secreting ionic liquid-stable cellulase:consolidated bioprocessing of pretreated lignocellulose containing residual ionic liquid[J]. Bioresource Technology, 2015, 181:18-25.
[16] DE ALMEIDA M N, GUIMARAES V M, FALKOSKI D L, et al. Direct ethanol production from glucose, xylose and sugarcane bagasse by the corn endophytic fungi Fusarium verticillioides and Acremonium zeae[J]. Journal of Biotechnology, 2013, 168(1):71-77.
[17] ZHANG B, YANG S T. Metabolic engineering of Rhizopus oryzae:effects of overexpressing fumR gene on cell growth and fumaric acid biosynthesis from glucose[J]. Process Biochemistry, 2012, 47(12):2159-2165.
[18] BÜYÜKKILECI A O, HAMAMCI H, YUCEL M. Lactate and ethanol productions by Rhizopus oryzae ATCC 9363 and activities of related pyruvate branch point enzymes[J]. Journal of Bioscience and Bioengineering, 2006, 102(5):464-466.
[19] INOKUMA K, TAKANO M, HOSHINO K. Direct ethanol production from N-acetylglucosamine and chitin substrates by Mucor species[J]. Biochemical Engineering Journal, 2013, 72:24-32.
[20] KHALEGHIAN H, KARIMI K, BEHZAD T. Ethanol production from rice straw by sodium carbonate pretreatment and Mucor hiemalis fermentation[J]. Industrial Crops and Products, 2015, 76:1079-1085.
[21] DOGARIS I, MAMMA D, KEKOS D. Biotechnological production of ethanol from renewable resources by Neurospora crassa:an alternative to conventional yeast fermentations?[J]. Applied Microbiology & Biotechnology, 2013, 97(4):1457-1473.
[22] WATERS J C, NIXON A, DWYER M, et al. Developing elite Neurospora crassa, strains for cellulosic ethanol production using fungal breeding[J]. Journal of Industrial Microbiology & Biotechnology, 2017, 44(8):1137-1144.
[23] ZERVA A, SAVVIDES A L, KATSIFAS E A, et al. Evaluation of Paecilomyces variotii potential in bioethanol production from lignocellulose through consolidated bioprocessing[J]. Bioresource Technology, 2014, 162:294-299.
[24] HASUNUMA T, KONDO A. Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering[J]. Biotechnology Advances, 2012, 30(6):1207-1218.
[25] CHAROENSOPHARAT K, THANONKEO P, THANONKEO S, et al. Ethanol production from Jerusalem artichoke tubers at high temperature by newly isolated thermotolerant inulin-utilizing yeast Kluyveromyces marxianus, using consolidated bioprocessing[J]. Antonie Van Leeuwenhoek, 2015, 108(1):173-190.
[26] JEFFRIES T W, NELSON S S, MAHAN S D, et al. Pichia stipitis engineered for improved fermentation of cellulosic and hemicellulosic sugars[C]//The 32nd Symposium on Biotechnology for Fuels and Chemicals. 2010.
[27] JEFFRIES T W, GRIGORIEV I V, GRIMWOOD J, et al. Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis[J]. Nature Biotechnology, 2007, 25(3):319-326.
[28] RYABOVA O B, CHMIL O M, SIBIRNY A A. Xylose and cellobiose fermentation to ethanol by the thermotolerant methylotrophic yeast Hansenula polymorpha[J]. FEMS Yeast Research, 2003, 4(2):157-164.
[29] LIU Z L, WEBER S A, COTTA M A. Isolation and characterization of a β-glucosidase from a Clavispora strain with potential applications in bioethanol production from cellulosic materials[J]. BioEnergy Research, 2013, 6(1):65-74.
[30] TSUJI M, GOSHIMA T, MATSUSHIKA A, et al. Direct ethanol fermentation from lignocellulosic biomass by Antarctic basidiomycetous yeast Mrakia blollopis under a low temperature condition[J]. Cryobiology, 2013, 67(2):241-243.
[31] ZHANG G C, LIU J J, KONG I I, et al. Combining C6 and C5 sugar metabolism for enhancing microbial bioconversion[J]. Current Opinion in Chemical Biology, 2015, 29:49-57.
[32] SAHA B C, QURESHI N, KENNEDY G J, et al. Biological pretreatment of corn stover with white-rot fungus for improved enzymatic hydrolysis[J]. International Biodeterioration & Biodegradation, 2016, 109:29-35.
[33] MATTILA H, KUUSKERI J, LUNDELL T. Single-step, single-organism bioethanol production and bioconversion of lignocellulose waste materials by phlebioid fungal species[J]. Bioresource Technology, 2017, 225:254-261.
[34] HORISAWA S, ANDO H, ARIGA O, et al. Direct ethanol production from cellulosic materials by consolidated biological processing using the wood rot fungus Schizophyllum commune[J]. Bioresource Technology, 2015, 197:37-41.
[35] OKAMOTO K, UCHⅡ A, KANAWAKU R, et al. Bioconversion of xylose, hexoses and biomass to ethanol by a new isolate of the white rot basidiomycete Trametes versicolor[J]. Springerplus, 2014, 3(1):121.
[36] MAEHARA T, ICHINOSE H, FURUKAWA T, et al. Ethanol production from high cellulose concentration by the basidiomycete fungus Flammulina velutipes[J]. Fungal Biology, 2013, 117(3):220-226.
[37] OKAMOTO K, NITTA Y, MAEKAWA N, et al. Direct ethanol production from starch, wheat bran and rice straw by the white rot fungus Trametes hirsuta[J]. Enzyme and Microbial Technology, 2011, 48(3):273-277.
[38] OKAMOTO K, IMASHIRO K, AKIZAWA Y, et al. Production of ethanol by the white-rot basidiomycetes Peniophora cinerea and Trametes suaveolens[J]. Biotechnology Letters, 2010, 32(7):909-913.
[39] BAK J S, KO J K, CHOI I G, et al. Fungal pretreatment of lignocellulose by Phanerochaete chrysosporium to produce ethanol from rice straw[J]. Biotechnology and Bioengineering, 2009, 104(3):471-482.
[40] HUANG J, CHEN D, WEI Y, et al. Direct ethanol production from lignocellulosic sugars and sugarcane bagasse by a recombinant Trichoderma reesei strain HJ48[J]. The Scientific World Journal, 2014, 3:798683.
[41] WANG J, HIRABAYASHI S, MORI T, et al. Improvement of ethanol production by recombinant expression of pyruvate decarboxylase in the white-rot fungus Phanerochaete sordida YK-624[J]. Journal of Bioscience and Bioengineering, 2016, 122(1):17-21.
[42] MAEHARA T, TAKABATAKE K, KANEKO S. Expression of Arabidopsis thaliana xylose isomerase gene and its effect on ethanol production in Flammulina velutipes[J]. Fungal Biology, 2013, 117(11):776-782.
[43] ANASONTZIS G E, KOURTOGLOU E, VILLASBOAS S G, et al. Metabolic engineering of Fusarium oxysporum to improve its ethanol-producing capability[J]. Frontiers in Bicrobiology, 2016, 7:632.
[44] ANASONTZIS G E, ZERVA A, STATHOPOULOU P M, et al. Homologous overexpression of xylanase in Fusarium oxysporum increases ethanol productivity during consolidated bioprocessing (CBP) of lignocellulosics[J]. Journal of Biotechnology, 2011, 152(1):16-23.
[45] ZHANG J, ZHANG B, WANG D, et al. Rapid ethanol production at elevated temperatures by engineered thermotolerant Kluyveromyces marxianus via the NADP (H)-preferring xylose reductase-xylitol dehydrogenase pathway[J]. Metabolic Engineering, 2015, 31:140-152.
[46] JO S E, SEONG Y J, LEE H S, et al. Microaerobic conversion of xylose to ethanol in recombinant Saccharomyces cerevisiae SX6 MUT expressing cofactor-balanced xylose metabolic enzymes and deficient in ALD6[J]. Journal of Biotechnology, 2016, 227:72-78.
[47] TREEBUPACHATSAKUL T, NAKAZAWA H, SHINBO H, et al. Heterologously expressed Aspergillus aculeatus β-glucosidase in Saccharomyces cerevisiae is a cost-effective alternative to commercial supplementation of β-glucosidase in industrial ethanol production using Trichoderma reesei cellulases[J]. Journal of Bioscience and Bioengineering, 2016, 121(1):27-35.
[48] AMOAH J, ISHIZUE N, ISHIZAKI M, et al. Development and evaluation of consolidated bioprocessing yeast for ethanol production from ionic liquid-pretreated bagasse[J]. Bioresource Technology B, 2017, 245:1413-1420.
[49] TURANLI-YILDIZ B, BENBADIS L, ALKIM C, et al. In vivo evolutionary engineering for ethanol-tolerance of Saccharomyces cerevisiae haploid cells triggers diploidization[J]. Journal of Bioscience and Bioengineering, 2017, 124(3):309-318.
[50] KHATUN M M, YU X, KONDO A, et al. Improved ethanol production at high temperature by consolidated bioprocessing using Saccharomyces cerevisiae strain engineered with artificial zinc finger protein[J]. Bioresource Technology B, 2017, 245:1447-1454.
[51] KHATUN M M, LIU C G, ZHAO X Q, et al. Consolidated ethanol production from Jerusalem artichoke tubers at elevated temperature by Saccharomyces cerevisiae engineered with inulinase expression through cell surface display[J]. Journal of Industrial Microbiology & Biotechnology, 2017, 44(2):295-301.
[52] PUSEENAM A, TANAPONGPIPAT S, ROONGSAWANG N. Co-expression of endoxylanase and endoglucanase in Scheffersomyces stipitis and its application in ethanol production[J]. Applied Biochemistry and Biotechnology, 2015, 177(8):1690-1700.
[53] JIANG L L, ZHOU J J, QUAN C S, et al. Advances in industrial microbiome based on microbial consortium for biorefinery[J]. Bioresources & Bioprocessing, 2017, 4(1):11.
[54] THOMSEN M. Complex media from processing of agricultural crops for microbial fermentation[J]. Applied Microbiology and Biotechnology, 2005, 68(5), 598-606.
[55] HO C Y, CHANG J J, LEE S C, et al. Development of cellulosic ethanol production process via co-culturing of artificial cellulosomal Bacillus and kefir yeast[J]. Applied Energy, 2012, 100:27-32.
[56] ZUROFF T R, XIQUES S B, Curtis W R. Consortia-mediated bioprocessing of cellulose to ethanol with a symbiotic Clostridium phytofermentans/yeast co-culture[J]. Biotechnology for Biofuels, 2013, 6(1):59.
[57] BRETHAUER S, STUDER M H. Consolidated bioprocessing of lignocellulose by a microbial consortium[J]. Energy & Environmental Science, 2014, 7(4):1446-1453.
[58] WILKINSON S, SMART K A, JAMES S, et al. Bioethanol production from brewers spent grains using a fungal consolidated bioprocessing (CBP) approach[J]. BioEnergy Research, 2017, 10(1):146-157. |