[1] KIM S R, HA S J, WEI N, et al. Simultaneous co-fermentation of mixed sugars:a promising strategy for producing cellulosic ethanol[J]. Trends in Biotechnology, 2012, 30(5):274-282.
[2] 张强, 郭元, 韩德明. 酿酒酵母乙醇耐受性的研究进展[J]. 化工进展, 2014, 33(1):187-192. ZHANG Q, GUO Y, HAN D M. Research progress in the ethanol tolerance of yeast[J]. Chemical Industry and Engineering Progress, 2014, 33(1):187-192.
[3] 张艳, 卢文玉. 酿酒酵母细胞表达异源萜类化合物的研究进展[J]. 化工进展, 2014, 33(5):1265-1270. ZHANG Y, LU W Y. Progress of heterologous expression of terpenes in Saccharomyces cerevisiae[J]. Chemical Industry and Engineering Progress, 2014, 33(5):1265-1270.
[4] KIM S R, PARK Y C, JIN Y S, et al. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism[J]. Biotechnology Advances, 2013, 31(6):851-861.
[5] JO J H, PARK Y C, JIN Y S, et al. Construction of efficient xylose-fermenting Saccharomyces cerevisiae through a synthetic isozyme system of xylose reductase from Scheffersomyces stipitis[J]. Bioresource Technology, 2017, 241:7.
[6] ZHANG X Y, WANG J Y, ZHANG W W, et al. Optimizing the coordinated transcription of central xylose-metabolism genes in Saccharomyces cerevisiae[J]. Applied Microbiology and Biotechnology, 2018, 102:1-11.
[7] KIM S R, HA S J, KONG I I, et al. High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae[J]. Metabolic Engineering, 2012, 14(4):336-343.
[8] CADETE R M, DE LAS HERAS A M, SANDSTROM A G, et al. Exploring xylose metabolism in Spathaspora species:Xyl 1.2 from Spathaspora passalidarum as the key for efficient anaerobic xylose fermentation in metabolic engineered Saccharomyces cerevisiae[J]. Biotechnology for Biofuels, 2016, 9:1.
[9] WEI N, QUARTERMAN J, KIM S R, et al. Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast[J]. Nature Communications, 2013, 4:2580.
[10] ZHANG G C, KONG I I, WEI N, et al. Optimization of an acetate reduction pathway for producing cellulosic ethanol by engineered yeast[J]. Biotechnology and Bioengineering, 2016, 113(12):2587-2596.
[11] VAN MARIS A J, WINKLER A A, KUYPER M, et al. Development of efficient xylose fermentation in Saccharomyces cerevisiae:xylose isomerase as a key component[M]. Berlin, Heidelberg:Springer, 2007:179-204.
[12] KUYPER M, HARHANGI H R, STAVE A K, et al. High-level functional expression of a fungal xylose isomerase:the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae?[J]. FEMS Yeast Research, 2003, 4(1):69-78.
[13] KUYPER M, AARON A, VAN DIJKEN J P, et al. Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation:a proof of principle[J]. FEMS Yeast Research, 2004, 4(6):655-664.
[14] KUYPER M, HARTOG M M, TOIRKENS M J, et al. Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation[J]. FEMS Yeast Research, 2005, 5(4-5):399-409.
[15] KUYPER M, TOIRKENS M J, DIDERICH J A, et al. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain[J]. FEMS Yeast Research, 2005, 5(10):925-934.
[16] ZHOU H, CHENG J S, WANG B L, et al. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae[J]. Metabolic Engineering, 2012, 14(6):611-622.
[17] DOS SANTOS L V, CARAZZOLLE M F, NAGAMATSU S T, et al. Unraveling the genetic basis of xylose consumption in engineered Saccharomyces cerevisiae strains[J]. Scientific Reports, 2016, 6:38676.
[18] DEMEKE M M, FOULQUIE-MORENO M R, DUMORTIER F, et al. Rapid evolution of recombinant Saccharomyces cerevisiae for xylose fermentation through formation of extra-chromosomal circular DNA[J]. PLoS Genetics, 2015, 11(3):e1005010.
[19] HOU J, SHEN Y, JIAO C L, et al. Characterization and evolution of xylose isomerase screened from the bovine rumen metagenome in Saccharomyces cerevisiae[J]. Journal of Bioscience and Bioengineering, 2016, 121(2):160-165.
[20] KO J K, UM Y, LEE S M. Effect of manganese ions on ethanol fermentation by xylose isomerase expressing Saccharomyces cerevisiae under acetic acid stress[J]. Bioresource Technology, 2016, 222:422-430.
[21] VERHOEVEN M D, LEE M, KAMOEN L, et al. Mutations in PMR1 stimulate xylose isomerase activity and anaerobic growth on xylose of engineered Saccharomyces cerevisiae by influencing manganese homeostasis[J]. Scientific Reports, 2017, 7:46155.
[22] HOU J, JIAO C L, PENG B Y, et al. Mutation of a regulator Ask10p improves xylose isomerase activity through up-regulation of molecular chaperones in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2016, 38:241-250.
[23] THOMIK T, WITTIG I, CHOE J Y. An artificial transport metabolon facilitates improved substrate utilization in yeast[J]. Nature Chemical Biology, 2017, 13(11):1158-1163.
[24] BRAT D, BOLES E, WIEDEMANN B. Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae[J]. Applied and Environmental Microbiology, 2009, 75(8):2304-2311.
[25] MADHAVAN A, TAMALAMPUDI S, USHIDA K, et al. Xylose isomerase from polycentric fungus Orpinomyces:gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol[J]. Applied Microbiology and Biotechnology, 2009, 82(6):1067-1078.
[26] MERT M J, ROSE S H, LA GRANGE D C, et al. Quantitative metabolomics of a xylose-utilizing Saccharomyces cerevisiae strain expressing the Bacteroides thetaiotaomicron xylose isomerase on glucose and xylose[J]. Journal of Industrial Microbiology & Biotechnology, 2017, 44(10):1459-1470.
[27] AELING K A, SALMON K A, LAPLAZA J M, et al. Co-fermentation of xylose and cellobiose by an engineered Saccharomyces cerevisiae[J]. Journal of Industrial Microbiology & Biotechnology, 2012, 39(11):1597-1604.
[28] HECTOR R E, DIEN B S, COTTA M A, et al. Growth and fermentation of D-xylose by Saccharomyces cerevisiae expressing a novel D-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24[J]. Biotechnology for Biofuels, 2013, 6:84.
[29] PENG B Y, HUANG S C, LIU T T, et al. Bacterial xylose isomerases from the mammal gut Bacteroidetes cluster function in Saccharomyces cerevisiae for effective xylose fermentation[J]. Microbial Cell Factories, 2015, 14:70.
[30] KATAHIRA S, MURAMOTO N, MORIYA S, et al. Screening and evolution of a novel protist xylose isomerase from the termite Reticulitermes speratus for efficient xylose fermentation in Saccharomyces cerevisiae[J]. Biotechnology for Biofuels, 2017, 10:203.
[31] SARTHY A, MCCONAUGHY B, LOBO Z, et al. Expression of the Escherichia coli xylose isomerase gene in Saccharomyces cerevisiae[J]. Applied and Environmental Microbiology, 1987, 53(9):1996-2000.
[32] XIA P F, ZHANG G C, LIU J J, et al. GroE chaperonins assisted functional expression of bacterial enzymes in Saccharomyces cerevisiae[J]. Biotechnology and Bioengineering, 2016, 113(10):2149-2155.
[33] LI H X, SHEN Y, WU M L, et al. Engineering a wild-type diploid Saccharomyces cerevisiae strain for second-generation bioethanol production[J]. Bioresour Bioprocess, 2016, 3(1):51.
[34] KO J K, UM Y, WOO H M, et al. Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway[J]. Bioresource Technology, 2016, 209:290-296.
[35] LEE S M, JELLISON T, ALPER H S. Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields[J]. Biotechnology and Biofuels, 2014, 7:122.
[36] 左颀, 张明明, 程诚, 等. 不同宿主来源的重组酿酒酵母混合糖代谢比较[J]. 微生物学通报, 2014, 41(7):1270-1277. ZUO Q, ZHANG M M, CHENG C, et al. Comparison of glucose/xylose cofermentation in recombinant Saccharomyces cerevisiae strains using different hosts[J]. Microbiology China, 2014, 41(7):1270-1277.
[37] 程诚, 熊亮, 李勇昊, 等. 混合糖发酵重组酿酒酵母的菌株构建和菊芋秸秆同步糖化发酵研究[J]. 微生物学通报, 2016, 43(7):1411-1418. CHENG C, XIONG L, LI Y H, et al. Construction of mixed-sugar fermenting recombinant Saccharomyces cerevisiae and ethanol production from Jerusalem artichoke stalk by simultaneous saccharification and fermentation[J]. Microbiology China, 2016, 43(7):1411-1418.
[38] LI Y C, LI G Y, GOU M, et al. Functional expression of xylose isomerase in flocculating industrial Saccharomyces cerevisiae strain for bioethanol production[J]. Journal of Bioscience and Bioengineering, 2016, 121(6):7.
[39] QI X, ZHA J, LIU G G, et al. Heterologous xylose isomerase pathway and evolutionary engineering improve xylose utilization in Saccharomyces cerevisiae[J]. Frontiers in Microbiology, 2015, 6:1165.
[40] LI Y C, ZENG W Y, GUO M, et al. Transcriptome changes in adaptive evolution of xylose-fermenting industrial Saccharomyces cerevisiae strains with δ-integration of different xylA genes[J]. Applied Microbiology and Biotechnology, 2017, 101(20):7741-7753.
[41] DU J, LI S J, ZHAO H M. Discovery and characterization of novel D-xylose-specific transporters from Neurospora crassa and Pichia stipitis[J]. Molecular Biosystems, 2010, 6(11):2150-2156.
[42] MOYSES D N, REIS V C, DE ALMEIDA J R, et al. Xylose fermentation by Saccharomyces cerevisiae:challenges and prospects[J]. International Journal of Molecular Sciences, 2016, 17(3):207.
[43] FARWICK A, BRUDER S, SCHADEWEG V, et al. Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(14):5159-5164.
[44] REIDER APEL A, OUELLET M, SZMIDT-MIDDLETON H, et al. Evolved hexose transporter enhances xylose uptake and glucose/xylose co-utilization in Saccharomyces cerevisiae[J]. Scientific Reports, 2016, 6:19512.
[45] WANG M, LI S J, ZHAO H M. Design and engineering of intracellular-metabolite-sensing/regulation gene circuits in Saccharomyces cerevisiae[J]. Biotechnology and Bioengineering, 2016, 113(1):206-215.
[46] WANG M, YU C Z, ZHAO H. Identification of an important motif that controls the activity and specificity of sugar transporters[J]. Biotechnology and Bioengineering, 2016, 113(7):1460-1467.
[47] NIJLAND J G, VOS E, SHIN H Y, et al. Improving pentose fermentation by preventing ubiquitination of hexose transporters in Saccharomyces cerevisiae[J]. Biotechnology for Biofuels, 2016, 9:158.
[48] HECTOR R E, QURESHI N, HUGHES S R, et al. Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption[J]. Applied Microbiology and Biotechnology, 2008, 80(4):675-684.
[49] SLOOTHAAK J, TAMAYO-RAMOS J A, ODONI D I, et al. Identification and functional characterization of novel xylose transporters from the cell factories Aspergillus niger and Trichoderma reesei[J]. Biotechnology for Biofuels, 2016, 9:148.
[50] WANG M, YU C Z, ZHAO H M. Directed evolution of xylose specific transporters to facilitate glucose-xylose co-utilization[J]. Biotechnology and Bioengineering, 2016, 113(3):484-491.
[51] YOUNG E M, TONG A, BUI H, et al. Rewiring yeast sugar transporter preference through modifying a conserved protein motif[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(1):131-136.
[52] LI H, SCHMITZ O, ALPER H S. Enabling glucose/xylose co-transport in yeast through the directed evolution of a sugar transporter[J]. Applied Microbiology and Biotechnology, 2016, 100(23):10215-10223.
[53] YOUNG E M, COMER A D, HUANG H, et al. A molecular transporter engineering approach to improving xylose catabolism in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2012, 14(4):401-411.
[54] ZHAO X Q, ZI L H, BAI F W, et al. Bioethanol from lignocellulosic biomass[M]. Berlin, Heidelberg:Springer, 2012:25-51.
[55] ZHU J Q, QIN L, LI B Z, et al. Simultaneous saccharification and co-fermentation of aqueous ammonia pretreated corn stover with an engineered Saccharomyces cerevisiae SyBE005[J]. Bioresource Technology, 2014, 169:9-18.
[56] MAHBOUBI A, YLITERVO P, DOYEN W, et al. Continuous bioethanol fermentation from wheat straw hydrolysate with high suspended solid content using an immersed flat sheet membrane bioreactor[J]. Bioresource Technology, 2017, 241:296-308.
[57] QIN L, LI X, LIU L, et al. Dual effect of soluble materials in pretreated lignocellulose on simultaneous saccharification and co-fermentation process for the bioethanol production[J]. Bioresource Technology, 2017, 224:342-348.
[58] 李洪兴, 张笑然, 沈煜, 等. 纤维素乙醇生物加工过程中的抑制物对酿酒酵母的影响及应对措施[J]. 生物工程学报, 2009, 25(9):1321-1328. LI H X, ZHANG X R, SHEN Y, et al. Inhibitors and their effects on Saccharomyces cerevisiae and relevant countermeasures in bioprocess of ethanol production from lignocellulose:a review[J]. Chinese Journal of Biotechnology, 2009, 25(9):1321-1328.
[59] 刘贺, 朱家庆, 纵秋瑾, 等. 生物质转化工程酿酒酵母的研究进展[J]. 生物技术通报, 2017, 33(1):93-98. LIU H, ZHU J Q, ZONG Q J, et al. The development of engineered Saccharomyces cerevisiae for biomass conversion[J]. Biotechnology Bulletin, 2017, 33(1):93-98.
[60] ZHANG M M, ZHAO X Q, CHENG C, et al. Improved growth and ethanol fermentation of Saccharomyces cerevisiae in the presence of acetic acid by overexpression of SET5 and PPR1[J]. Biotechnology Journal, 2015, 10(12):1903-1911.
[61] ZHANG M M, ZHANG K Y, MEHMOOD M A, et al. Deletion of acetate transporter gene ADY2 improved tolerance of Saccharomyces cerevisiae against multiple stresses and enhanced ethanol production in the presence of acetic acid[J]. Bioresource Technology, 2017, 245:1461-1468.
[62] DEMEKE M M, DIETZ H, LI Y, et al. Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering[J]. Biotechnology for Biofuels, 2013, 6(1):89.
[63] ZHU J Q, QIN L, LI W C, et al. Simultaneous saccharification and co-fermentation of dry diluted acid pretreated corn stover at high dry matter loading:overcoming the inhibitors by non-tolerant yeast[J]. Bioresource Technology, 2015, 198:39-46.
[64] PARREIRAS L S, BREUER R J, NARASIMHAN R A, et al. Engineering and two-stage evolution of a lignocellulosic hydrolysate-tolerant Saccharomyces cerevisiae strain for anaerobic fermentation of xylose from AFEX pretreated corn stover[J]. PLoS One, 2014, 9(9):e107499.
[65] WANG R F, UNREAN P, FRANZEN C J. Model-based optimization and scale-up of multi-feed simultaneous saccharification and co-fermentation of steam pre-treated lignocellulose enables high gravity ethanol production[J]. Biotechnology for Biofuels, 2016, 9(88):13.
[66] LIU Z H, CHEN H Z. Simultaneous saccharification and co-fermentation for improving the xylose utilization of steam exploded corn stover at high solid loading[J]. Bioresource Technology, 2016, 201:15-26.
[67] LEE Y G, JIN Y S, CHA Y L, et al. Bioethanol production from cellulosic hydrolysates by engineered industrial Saccharomyces cerevisiae[J]. Bioresource Technology, 2017, 228:355-361.
[68] JIN M J, LIU Y P, DA COSTA SOUSA L, et al. Development of rapid bioconversion with integrated recycle technology for ethanol production from extractive ammonia pretreated corn stover[J]. Biotechnology and Bioengineering, 2017, 114(8):1713-1720.
[69] LIU G, ZHANG Q, LI H X, et al. Dry biorefining maximizes the potentials of simultaneous saccharification and co-fermentation for cellulosic ethanol production[J]. Biotechnology and Bioengineering, 2018, 115(1):60-69.
[70] 吕永坤, 堵国成, 陈坚, 等. 合成生物学技术研究进展[J]. 生物技术通报, 2015, 31(4):134-148. LÜ Y K, DU G C, CHEN J, et al. Advances in synthetic biology[J]. Biotechnology Bulletin, 2015, 31(4):134-148. |