化工进展 ›› 2021, Vol. 40 ›› Issue (4): 2092-2108.DOI: 10.16085/j.issn.1000-6613.2020-0964
郭栋稳1,2(), 赵文广1,2, 刘贤响1,2(), 尹笃林1,2
收稿日期:
2020-05-29
出版日期:
2021-04-05
发布日期:
2021-04-14
通讯作者:
刘贤响
作者简介:
郭栋稳(1996—),男,硕士研究生,研究方向为生物质化工。E-mail:基金资助:
GUO Dongwen1,2(), ZHAO Wenguang1,2, LIU Xianxiang1,2(), YIN Dulin1,2
Received:
2020-05-29
Online:
2021-04-05
Published:
2021-04-14
Contact:
LIU Xianxiang
摘要:
2,5-二甲基呋喃(DMF)是一种可替代化石能源的新型液体生物质燃料,对于缓解当今能源危机具有重要意义。鉴于其优良的性质和广阔的应用前景,以生物质资源为原料通过绿色、经济的方法制备DMF逐渐成为科学研究的热点。本文归纳和总结了近年来国内外由生物质糖类化合物出发制备DMF的一些催化技术研究新进展,着重从活性中心和载体的构效关系出发对比了不同金属催化剂的催化效果,讨论了影响多相反应体系的关键因素,分析了不同反应路线和制备方法。对进一步研究和开发从生物质糖类化合物“一锅法”转化成DMF的催化新技术提出了一些建议和展望,为探索高效、经济、绿色、可持续的DMF合成途径提供科学依据和创新思路,促进生物质制DMF的工业技术发展。
中图分类号:
郭栋稳, 赵文广, 刘贤响, 尹笃林. 生物质液体燃料2,5-二甲基呋喃的催化合成进展[J]. 化工进展, 2021, 40(4): 2092-2108.
GUO Dongwen, ZHAO Wenguang, LIU Xianxiang, YIN Dulin. Advances in catalytic conversion of biomass carbohydrates into biofuel 2,5-dimethylfuran[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2092-2108.
1 | MATSON Theodore D, BARTA Katalin, IRETSKII Alexei V, et al. One-pot catalytic conversion of cellulose and of woody biomass solids to liquid fuels[J]. Journal of the American Chemical Society, 2011, 133(35): 14090-14097. |
2 | Yuriy ROMÁN-LESHKOV, BARRETT Christopher J, LIU Zhen Y, et al. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates[J]. Nature, 2007, 447(7147): 982-985. |
3 | BOZELL Joseph J, PETERSEN Gene R. Technology development for the production of biobased products from biorefinery carbohydrates-the US department of energy’s “top 10” revisited[J]. Green Chemistry, 2010, 12(4): 539-554. |
4 | THANANATTHANACHON Todsapon, RAUCHFUSS Thomas B. Efficient production of the liquid fuel 2,5-dimethylfuran from fructose using formic acid as a reagent[J]. Angewandte Chemie International Edition, 2010, 49(37): 6616-6618. |
5 | QIAN Yong, ZHU Lifeng, WANG Yue, et al. Recent progress in the development of biofuel 2,5-dimethylfuran[J]. Renewable Sustainable Energy Reviews, 2015, 41: 633-646. |
6 | LIU Xianxiang, XIAO Jiafu, DING Hui, et al. Catalytic aerobic oxidation of 5-hydroxymethylfurfural over VO2+ and Cu2+ immobilized on amino functionalized SBA-15[J]. Chemical Engineering Journal, 2016, 283: 1315-1321. |
7 | PELETEIRO Susana, RIVAS Sandra, ALONSO José Luis, et al. Furfural production using ionic liquids: a review[J]. Bioresource Technology, 2016, 202: 181-191. |
8 | RAMLI Nur Aainaa Syahira, AMIN Nor Aishah Saidina. Kinetic study of glucose conversion to levulinic acid over Fe/HY zeolite catalyst[J]. Chemical Engineering Journal, 2016, 283: 150-159. |
9 | BRAUN Max, ANTONIETTI Markus. Continuous flow process for the production of 2,5-dimethylfuran from fructose using (non-noble metal based) heterogeneous catalysis[J]. Green Chemistry, 2017, 19(16): 3813-3819. |
10 | WANG Xiaofeng, LIANG Xinhua, LI Jiaomin, et al. Catalytic hydrogenolysis of biomass-derived 5-hydroxymethylfurfural to biofuel 2,5-dimethylfuran[J]. Applied Catalysis A: General, 2019, 576: 85-95. |
11 | CHEN Shuo, WOJCIESZAK Robert, DUMEIGNIL Franck, et al. How catalysts and experimental conditions determine the selective hydroconversion of furfural and 5-hydroxymethylfurfural[J]. Chemical Reviews, 2018, 118(22): 11023-11117. |
12 | HU Lei, LIN Lu, LIU Shijie. Chemoselective hydrogenation of biomass-derived 5-hydroxymethylfurfural into the liquid biofuel 2,5-dimethylfuran[J]. Industrial Engineering Chemistry Research, 2014, 53(24): 9969-9978. |
13 | PUTTEN Robert Jan VAN, WAAL Jan C VAN DER, DE JONG Ed, et al. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources[J]. Chemical Reviews, 2013, 113(3): 1499-1597. |
14 | WANG Haiyong, ZHU Changhui, LI Dan, et al. Recent advances in catalytic conversion of biomass to 5-hydroxymethylfurfural and 2,5-dimethylfuran[J]. Renewable and Sustainable Energy Reviews, 2019, 103: 227-247. |
15 | LIU Xianxiang, XU Qiong, LIU Junyi, et al. Hydrolysis of cellulose into reducing sugars in ionic liquids[J]. Fuel, 2016, 164: 46-50. |
16 | ZHOU Shuolin, LIU Xianxiang, LAI Jinhua, et al. Covalently linked organo-sulfonic acid modified titanate nanotube hybrid nanostructures for the catalytic esterification of levulinic acid with n-butyl alcohol[J]. Chemical Engineering Journal, 2019, 361: 571-577. |
17 | LIU Xianxiang, ZHANG Zehui, YANG Yongjun, et al. Selective hydrogenation of citral to 3,7-dimethyloctanal over activated carbon supported nano-palladium under atmospheric pressure[J]. Chemical Engineering Journal, 2015, 263: 290-298. |
18 | ZHOU Shuolin, JIANG Dabo, LIU Xianxiang, et al. Titanate nanotubes-bonded organosulfonic acid as solid acid catalyst for synthesis of butyl levulinate[J]. RSC Advances, 2018, 8(7): 3657-3662. |
19 | LIU Xianxiang, DING Hui, XU Qiong, et al. Selective oxidation of biomass derived 5-hydroxymethylfurfural to 2,5-diformylfuran using sodium nitrite[J]. Journal of Energy Chemistry, 2016, 25(1): 117-121. |
20 | 刘贤响, 杨拥军, 尹笃林, 等. 常压条件下Pd/C催化邻氯硝基苯加氧反应[J]. 化工进展, 2016, 35(2): 524-527. |
LIU Xianxiang, YANG Yongjun, YIN Dulin, et al. Hydrogenation performance of O-chloronitrobenzene over Pd/C under atmospheric pressure[J]. Chemical Industry and Engineering Progress, 2016, 35(2): 524-527. | |
21 | LAI Jinhua, LIU Kai, ZHOU Shuolin, et al. Selective oxidation of 5-hydroxymethylfurfural into 2,5-diformylfuran over VPO catalysts under atmospheric pressure[J]. RSC Advances, 2019, 9(25): 14242-14246. |
22 | LAI Jinhua, LIU Xianxiang, ZHOU Shuolin, et al. Catalytic transfer hydrogenation of biomass-derived ethyl levulinate into gamma-valerolactone over graphene oxide-supported zirconia catalysts[J]. Catalysis Letters, 2019, 149(10): 2749-2757. |
23 | GUO Dongwen, LIU Xianxiang, Cheng Feng, et al. Selective hydrogenolysis of 5-hydroxymethylfurfural to produce biofuel 2,5-dimethylfuran over Ni/ZSM-5 catalysts[J]. Fuel, 2020, 274: 117853. |
24 | CHIDAMBARAM Mandan, BELL Alexis T. A two-step approach for the catalytic conversion of glucose to 2,5-dimethylfuran in ionic liquids[J]. Green Chemistry, 2010, 12(7): 1253-1262. |
25 | YANG Youdi, LIU Hangyu, LI Shaopeng, et al. Hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran under mild conditions without any additive[J]. ACS Sustainable Chemistry: Engineering, 2019, 7(6): 5711-5716. |
26 | SAHA Basudeb, BOHN Christine M, ABU-OMAR Mahdi M. Zinc-assisted hydrodeoxygenation of biomass-derived 5-hydroxymethylfurfural to 2,5-dimethylfuran[J]. Chemsuschem, 2014, 7(11): 3095-3101. |
27 | CHATTERIEE Maya, ISHIZAKA Takayuki, KAWANAMI Hajime. Hydrogenation of 5-hydroxymethylfurfural in supercritical carbon dioxide-water: a tunable approach to dimethylfuran selectivity[J]. Green Chemistry, 2014, 16(3): 1543-1551. |
28 | NISHIMURA Shun, IKEDA Naoya, EBITANI Kohki. Selective hydrogenation of biomass-derived 5-hydroxymethylfurfural (HMF) to 2,5-dimethylfuran (DMF) under atmospheric hydrogenpressure over carbon supported PdAu bimetallic catalyst[J]. Catalysis Today, 2014, 232(17): 89-98. |
29 | ZHANG Feng, LIU Yunfei, YUAN Fulong, et al. Efficient production of the liquid fuel 2,5-dimethylfuran from 5-hydroxymethylfurfural in the absence of acid additive over bimetallic PdAu supported on graphitized carbon[J]. Energy and Fuels, 2017, 31(6): 6364-6373. |
30 | TALPADE Abhijit D, TIWARI Manishkumar S, YADAV Ganapati D. Selective hydrogenation of bio-based 5-hydroxymethyl furfural to 2,5-dimethylfuran over magnetically separable Fe-Pd/C bimetallic nanocatalyst[J]. Molecular Catalysis, 2019, 465: 1-15. |
31 | SARKAR Chitra, KOLEY Paramita, SHOWN Indrajit, et al. Integration of interfacial and alloy effects to modulate catalytic performance of metal-organic-framework-derived Cu-Pd nanocrystals toward hydrogenolysis of 5-hydroxymethylfurfural[J]. ACS Sustainable Chemistry and Engineering, 2019, 7(12): 10349-10362. |
32 | GAWADE Anil B, Tiwari Manishkumar S, YADAV Ganapati D. Biobased green process: selective hydrogenation of 5-hydroxymethylfurfural to 2,5-dimethyl furan under mild conditions using Pd-Cs2.5H0.5PW12O40/ K-10 clay[J]. ACS Sustainable Chemistry Engineering, 2016, 4(8): 4113-4123. |
33 | LIAO Weiping, ZHU Zhiguo, CHEN Naimeng, et al. Highly active bifunctional Pd-Co9S8/S-CNT catalysts for selective hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran[J]. Molecular Catalysis, 2020, 482: 110756. |
34 | MAAT L, RANTWIJK Fred VAN, LUIJKX Gerard C A, et al. Ether formation in the hydrogenolysis of hydroxymethylfurfural over palladium catalysts in alcoholic solution[J]. Heterocycles, 2009, 77(2): 1037-1044. |
35 | ZHANG Jun, DONG Kaijun, LUO Weimin. PdCl2-catalyzed hydrodeoxygenation of 5-hydroxymethylfurfural into 2,5-dimethylfuran at room-temperature using polymethylhydrosiloxane as the hydrogen donor[J]. Chemical Engineering Science, 2019, 201: 467-474. |
36 | MITRA Joyee, ZHOU Xiaoyuan, RAUCHFUSS Thomas. Pd/C-catalyzed reactions of HMF: decarbonylation, hydrogenation, and hydrogenolysis[J]. Green Chemistry, 2015, 17(1): 307-313. |
37 | MHADMHAN Sareena, FRANCO Ana, PINEDA Antonio, et al. Continuous flow selective hydrogenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran using highly active and stable Cu-Pd/reduced graphene oxide[J]. ACS Sustainable Chemistry and Engineering, 2019, 7(16): 14210-14216. |
38 | SCHOLZ David, AELLING Christof, HERMANS Lve. Catalytic transfer hydrogenation/hydrogenolysis for reductive upgrading of furfural and 5-(hydroxymethyl)furfural[J]. Chemsuschem, 2014, 7(1), 268-275. |
39 | ZHANG Junhua, LIN Lu, LIU Shijie. Efficient production of furan derivatives from a sugar mixture by catalytic process[J]. Energy Fuels, 2012, 26(7): 4560-4567. |
40 | HU Lei, TANG Xing, XU Jiaxing, et al. Selective transformation of 5-hydroxymethylfurfural into the liquid fuel 2,5-dimethylfuran over carbon-supported ruthenium[J]. Industrial and Engineering Chemistry Research, 2014, 53(8): 3056-3064. |
41 | Jungho JAE, ZHANG Weiqing, LOBO Raul F, et al. Production of dimethylfuran from hydroxymethylfurfural through catalytic transfer hydrogenation with ruthenium supported on carbon[J]. Chemsuschem, 2013, 6(7): 1158-1162. |
42 | YANG Yue, LIU Qiying, TAN Jin, et al. Selective hydrodeoxygenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran on Ru-MoOx/C catalysts[J]. RSC Advances, 2017, 7(27): 16311-16318. |
43 | LUCAS Nishita, KANNA Narasimha Rao, NAGPURE Atul S, et al. Novel catalysts for valorization of biomass to value-added chemicals and fuels[J]. Journal of Chemical Sciences, 2014, 126(2): 403-413. |
44 | ZU Yanhong, YANG Panpan, WANG Jianjian, et al. Efficient production of the liquid fuel 2,5-dimethylfuran from 5-hydroxymethylfurfural over Ru/Co3O4 catalyst[J]. Applied Catalysis B: Environmental, 2014, 146: 244-248. |
45 | NAGPURE Atul S, VENUGOPAL Ashok Kumar, LUCAS Nishita, et al. Renewable fuels from biomass-derived compounds: Ru-containing hydrotalcites as catalysts for conversion of HMF to 2,5-dimethylfuran[J]. Catalysis Science and Technology, 2015, 5(3): 1463-1472. |
46 | NAGPURE Atul S, LUCAS Nishita, CHILUKURI Satyanarayana V. Efficient preparation of liquid fuel 2,5-dimethylfuran from biomass-derived 5-hydroxymethylfurfural over Ru-NaY catalyst[J]. ACS Sustainable Chemistry and Engineering, 2015, 3(11): 2909-2916. |
47 | LI Qingyang, MAN Ping, YUAN Liqian, et al. Ruthenium supported on CoFe layered double oxide for selective hydrogenation of 5-hydroxymethylfurfural [J]. Molecular Catalysis, 2017, 431: 32-38. |
48 | TZENG Tai Wei, LIN Chan Yi, Chih Wen PAO, et al. Understanding catalytic hydrogenolysis of 5-hydroxymethylfurfural (HMF) to 2,5-dimethylfuran (DMF) using carbon supported Ru catalysts[J]. Fuel Processing Technology, 2020, 199: 106225. |
49 | Jungho JAE, ZHENG Weiqing, KARIM Ayman M, et al. The role of Ru and RuO2 in the catalytic transfer hydrogenation of 5-hydroxymethylfurfural for the production of 2,5-dimethylfuran[J]. Chemcatchem, 2014, 6(3): 848-856. |
50 | GOYAL Reena, SARKAR Bipul, Arijit BAG, et al. Studies of synergy between metal-support interfaces and selective hydrogenation of HMF to DMF in water[J]. Journal of Catalysis, 2016, 340: 248-260. |
51 | SHI Juanjuan, WANG Yingyu, YU Xini, et al. Production of 2,5-dimethylfuran from 5-hydroxymethylfurfural over reduced graphene oxides supported Pt catalyst under mild conditions[J]. Fuel, 2016, 163: 74-79. |
52 | WANG Guanghui, HILGERT Jakob, RICHTER Felix Herrmann, et al. Platinum-cobalt bimetallic nanoparticles in hollow carbon nanospheres for hydrogenolysis of 5-hydroxymethylfurfural[J]. Nature Materials, 2014, 13(3): 293-300. |
53 | LUO Jing, Lisandra ARROYO-RAMIREZ, GORTE Raymond J, et al. Hydrodeoxygenation of HMF over Pt/C in a continuous flow reactor[J]. AIChE Journal, 2015, 61(2): 590-597. |
54 | LUO Jing, Lisandra ARROYO-RAMIREZ, WEI Jifeng, et al. Comparison of HMF hydrodeoxygenation over different metal catalysts in a continuous flow reactor[J]. Applied Catalysis A: General, 2015, 508: 86-93. |
55 | LUO Jing, YUN Hongseok, MIRONENKO Alexander V, et al. Mechanisms for high selectivity in the hydrodeoxygenation of 5-hydroxymethylfurfural over PtCo nanocrystals[J]. ACS Catalysis, 2016, 6(7): 4095-4104. |
56 | LUO Jing, Jennifer D LEE, YUN Hongseok, et al. Base metal-Pt alloys: a general route to high selectivity and stability in the production of biofuels from HMF[J]. Applied Catalysis B: Environmental, 2016, 199: 439-446. |
57 | GYNGAZOVA Maria S, NEGAHDAR Leila, BLUMENTHAL Lena C, et al. Experimental and kinetic analysis of the liquid phase hydrodeoxygenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran over carbon-supported nickel catalysts[J]. Chemical Engineering Science, 2017, 173: 455-464. |
58 | KONG Xiao, ZHU Yifeng, ZHENG Hongyan, et al. Switchable synthesis of 2,5-dimethylfuran and 2,5-dihydroxymethyltetrahydrofuran from 5-hydroxymethylfurfural over raney Ni catalyst[J]. RSC Advances, 2014, 4(105): 60467-60472. |
59 | HUANG Yaobing, CHEN Mengyuan, YAN Long, et al. Nickel-tungsten carbide catalysts for the production of 2,5-dimethylfuran from biomass-derived molecules[J]. Chemsuschem, 2014, 7(4): 1068-1072. |
60 | KONG Xiao, ZHENG Runxiao, ZHU Yifeng, et al. Rational design of Ni-based catalysts derived from hydrotalcite for selective hydrogenation of 5-hydroxymethylfurfural[J]. Green Chemistry, 2015, 17(4): 2504-2514. |
61 | KONG Xiao, ZHU Yifeng, ZHENG Hongyan, et al. Ni nanoparticles inlaid nickel phyllosilicate as a metal-acid bifunctional catalyst for low-temperature hydrogenolysis reactions[J]. ACS Catalysis, 2015, 5(10): 5914-5920. |
62 | SIDDIQUI Nazia, ROY Anupam Singha, GOYAL Reena, et al. Hydrogenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran over nickel supported tungsten oxide nanostructured catalyst[J]. Sustainable Energy and Fuels, 2018, 2(1): 191-198. |
63 | ZHU Changhui, LIU Qiying, LI Dan, et al. Selective hydrodeoxygenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran over Ni supported on zirconium phosphate catalysts[J]. ACS Omega, 2018, 3(7): 7407-7417. |
64 | YANG Panpan, CUI Qiqi, ZU Yanhong, et al. Catalytic production of 2,5-dimethylfuran from 5-hydroxymethylfurfural over Ni/Co3O4 catalyst[J]. Catalysis Communications, 2015, 66: 55-59. |
65 | YU Lili, HU Le, CHEN Jin, et al. Robust and recyclable nonprecious bimetallic nanoparticles on carbon nanotubes for the hydrogenation and hydrogenolysis of 5-hydroxymethylfurfural[J]. Chemcatchem, 2015, 7(11): 1701-1707. |
66 | KONG Xiao, ZHU Yifeng, ZHENG Hongyan, et al. Inclusion of Zn into metallic Ni enables selective and effective synthesis of 2,5-dimethylfuran from bioderived 5-hydroxymethylfurfural[J]. ACS Sustainable Chemistry and Engineering, 2017, 5(12): 11280-11289. |
67 | YANG Panpan, XIA Qineng, LIU Xiaohui, et al. High-yield production of 2,5-dimethylfuran from 5-hydroxymethylfurfural over carbon supported Ni-Co bimetallic catalyst[J]. Journal of Energy Chemistry, 2016, 25(6): 1015-1020. |
68 | LUO Jing, MONAI Matteo, WANG Cong, et al. Unraveling the surface state and composition of highly selective nanocrystalline Ni-Cu alloy catalysts for hydrodeoxygenation of HMF[J]. Catalysis Science and Technology, 2017, 7(8): 1735-1743. |
69 | CEHN Naimeng, ZHU Zhiguo, SU Ting, et al. Catalytic hydrogenolysis of hydroxymethylfurfural to highly selective 2,5-dimethylfuran over FeCoNi/h-BN catalyst[J]. Chemical Engineering Journal, 2020, 381: 122755. |
70 | CHEN Mengyuan, CHEN Chubai, ZADA Bakht, et al. Perovskite type oxide-supported Ni catalysts for the production of 2,5-dimethylfuran from biomass-derived 5-hydroxymethylfurfural[J]. Green Chemistry, 2016, 18(13): 3858-3866. |
71 | GUPTA Dinesh, KUMAR Rohit, PANT Kmaml K, Hydrotalcite supported bimetallic (Ni-Cu) catalyst: a smart choice for one-pot conversion of biomass-derived platform chemicals to hydrogenated biofuels[J]. Fuel, 2020, 277: 118111. |
72 | ZHU Changhui, WANG Haiyun, LI Hu, et al. Selective hydrodeoxygenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran over alloyed Cu-Ni encapsulated in biochar catalysts[J]. ACS Sustainable Chemistry and Engineering, 2019, 7(24): 19556-19569. |
73 | HAN Wenpeng, TANG Mingxing, LI Jinlong, et al. Selective hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran catalyzed by ordered mesoporous alumina supported nickel-molybdenum sulfide catalysts[J]. Applied Catalysis B: Environmental, 2020, 268: 118748. |
74 | YANG Panpan, XIA Qineng, LIU Xiaohui, et al. Catalytic transfer hydrogenation/hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran over Ni-Co/C catalyst[J]. Fuel, 2017, 187: 159-166. |
75 | KUMALAPUTRI Angela J, BOTTARI Giovanni, ERNE Petra M, et al. Tunable and selective conversion of 5-HMF to 2,5-furandimethanol and 2,5-dimethylfuran over copper-doped porous metal oxides[J]. ChemSusChem, 2014, 7(8): 2266-2275. |
76 | AELLIG Christof, JENNY Florian, SCHOLZ David, et al. Combined 1,4-butanediol lactonization and transfer hydrogenation/hydrogenolysis of furfural-derivatives under continuous flow conditions[J]. Catalysis Science and Technolgy, 2014, 4(8): 2326-2331. |
77 | ZHU Yifeng, KONG Xiao, ZHENG Hongyan, et al. Efficient synthesis of 2,5-dihydroxymethylfuran and 2,5-dimethylfuran from 5-hydroxymethylfurfural using mineral-derived Cu catalysts as versatile catalysts[J]. Catalysis Science and Technology, 2015, 5(8): 4208-4217. |
78 | IRIONDO A, MENDIGUREN A, GüEMEZ M B, et al. 2,5-DMF production through hydrogenation of real and synthetic 5-HMF over transition metal catalysts supported on carriers with different nature[J]. Catalysis Today, 2017, 279: 286-295. |
79 | BOTTARI Giovanni, KUMALAPUTRI Angela J, KRAWCZYK Krzysztof K, et al. Copper-zinc alloy nanopowder: a robust precious-metal-free catalyst for the conversion of 5-hydroxymethylfurfural[J]. ChemSusChem, 2015, 8(8): 1323-1327. |
80 | SRIVASTAVA Sanjay, JADEJA G C, PARIKH Jigisha. Influence of supports for selective production of 2,5-dimethylfuran via bimetallic copper-cobalt catalyzed 5-hydroxymethylfurfural hydrogenolysis[J]. Chinese Journal of Catalysis, 2017, 38(4): 699-709. |
81 | GUO Weiwei, LIU Hangyu, ZHANG Suqi, et al. Efficient hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran over a cobalt and copper bimetallic catalyst on N-graphene-modified Al2O3[J]. Green Chemistry, 2016, 18(23): 6222-6228. |
82 | SRIVASTAVA Sanjay, JADEJA G C, PARIKH Jigisha. Synergism studies on alumina-supported copper-nickel catalysts towards furfural and 5-hydroxymethylfurfural hydrogenation[J]. Journal of Molecular Catalysis A: Chemical, 2017, 426: 244-256. |
83 | SEEMALA Bhogeswararao, CAI Charles M, WYMAN Charles E, et al. Support induced control of surface composition in Cu-Ni/TiO2 catalysts enables high yield Co-conversion of HMF and furfural to methylated furans[J]. ACS Catalysis, 2017, 7(6): 4070-4082. |
84 | HANSEN Thomas S, BARTA Katalin, ANASTAS Paul T, et al. One-pot reduction of 5-hydroxymethylfurfural via hydrogen transfer from supercritical methanol[J]. Green Chemistry, 2012, 14(9): 2457-2461. |
85 | ZHANG Jun, CHEN Jinzhu. Selective transfer hydrogenation of biomass-based furfural and 5-hydroxymethylfurfural over hydrotalcite-derived copper catalysts using methanol as a hydrogen donor[J]. ACS Sustainable Chemistry Engineering, 2017, 5: 5982-5993. |
86 | LI Dan, LIU Qiying, ZHU Changhui, et al. Selective hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran over Co3O4 catalyst by controlled reduction[J]. Journal of Energy Chemistry, 2019, 30: 34-41. |
87 | CHEN Bingfeng, LI Fengbo, HUANG Zhijun, et al. Carbon-coated Cu-Co bimetallic nanoparticles as selective and recyclable catalysts for production of biofuel 2,5-dimethylfuran[J]. Applied Catalysis B: Environmental, 2017, 200: 192-199. |
88 | LI Jiang, LIU Junling, LIU Heyang, et al. Selective hydrodeoxygenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran over heterogeneous iron catalysts[J]. ChemSusChem, 2017, 10(7): 1436-1447. |
89 | LI Jiang, ZHANG Junjie, LIU Heyang, et al. Graphitic carbon nitride (g-C3N4)-derived Fe-N-C catalysts for selective hydrodeoxygenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran[J]. Chemistry Select, 2017, 2(34): 11062-11070. |
90 | LI Hu, ZHAO Wenfeng, RIISAGER Anders, et al. A Pd-catalyzed in situ domino process for mild and quantitative production of 2,5-dimethylfuran directly from carbohydrates[J]. Green Chemistry, 2017, 19(9): 2101-2106. |
91 | LI Hu, ZHAO Wenfeng, FANG Zhen. Hydrophobic Pd nanocatalysts for one-pot and high-yield production of liquid furanic biofuels at low temperatures[J]. Applied Catalysis B:Environmental, 2017, 215: 18-27. |
92 | INSYANI Rizki, VERMA Deepak, KIM Seung Min, et al. Direct one-pot conversion of monosaccharides into high-yield 2,5-dimethylfuran over a multifunctional Pd/Zr-based metal-organic framework @sulfonated graphene oxide catalyst[J]. Green Chemistry, 2017, 19(11): 2482-2490. |
93 | DE Sudipta, DUTTA Saikat, SAHA Basudeb. One-pot conversions of lignocellulosic and algal biomass into liquid fuels[J]. ChemSusChem, 2012,5(9): 1826-1833. |
94 | UPARE Pravin P, HWANG Dong Won, HWANG Young Kyu, et al. An integrated process for the production of 2,5-dimethylfuran from fructose[J]. Green Chemistry, 2015, 17(6): 3310-3313. |
95 | WEI Zuojun, LOU Jiongtao, LI Zhenbin, et al. One-pot production of 2,5-dimethylfuran from fructose over Ru/C and a Lewis-Brønsted acid mixture in N,N-dimethylformamide[J]. Catalysis Science and Technology, 2016, 6(16): 6217-6225. |
96 | XIANG Xiaomin, CUI Jinglei, DING Guoqiang, et al. One-step continuous conversion of fructose to 2,5-dihydroxymethylfuran and 2,5-dimethylfuran[J]. ACS Sustainable Chemistry and Engineering, 2016, 4(9): 4506-4510. |
97 | ANDRADE Cristhiane M, LIMA FILHO Nelson M, MELO Sebastião J, et al. Kinetics of dimethylfurane production by dehydration and hydrogenolysis of carbohydrates[J]. Fuel, 2015, 147: 125-132. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[6] | 赵巍, 赵德银, 李世瀚, 刘洪达, 孙进, 郭艳秋. 三嗪型天然气管道缓蚀型减阻剂合成与应用[J]. 化工进展, 2023, 42(S1): 391-399. |
[7] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[8] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[9] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[10] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[11] | 许友好, 王维, 鲁波娜, 徐惠, 何鸣元. 中国炼油创新技术MIP的开发策略及启示[J]. 化工进展, 2023, 42(9): 4465-4470. |
[12] | 耿源泽, 周俊虎, 张天佑, 朱晓宇, 杨卫娟. 部分填充床燃烧器中庚烷均相/异相耦合燃烧[J]. 化工进展, 2023, 42(9): 4514-4521. |
[13] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[14] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[15] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |