化工进展 ›› 2021, Vol. 40 ›› Issue (4): 2082-2091.DOI: 10.16085/j.issn.1000-6613.2020-1988
刘东阳(), 白宇恩, 张霖宙, 张宇豪, 赵亮(), 高金森, 徐春明
收稿日期:
2020-09-29
出版日期:
2021-04-05
发布日期:
2021-04-14
通讯作者:
赵亮
作者简介:
刘东阳(1993—),男,博士研究生,研究方向为石油与天然气化学。E-mail:基金资助:
LIU Dongyang(), BAI Yu’en, ZHANG Linzhou, ZHANG Yuhao, ZHAO Liang(), GAO Jinsen, XU Chunming
Received:
2020-09-29
Online:
2021-04-05
Published:
2021-04-14
Contact:
ZHAO Liang
摘要:
随着环保法规的日益严格和成品油质量标准的持续升级,对催化裂化/裂解过程的产品要求和控制逐渐精细到分子级别,可靠的分子尺度反应动力学模型是实现催化裂化/裂解过程分子管理的关键所在。本文简述了催化裂化/裂解的反应机理和反应类型,回顾了近三十年来不同方法对催化裂化/裂解过程反应网络和分子尺度反应动力学模型构建的研究进展。重点对不同模型构建技术的优缺点进行了详细的对比分析,指出了催化裂化/裂解过程分子尺度反应动力学模型构建的研究方向:开发更为精细的石油分子分析表征技术,构建与催化剂失活和反应器模型相结合的分子尺度反应动力学模型,实现基于分子管理的催化裂化/裂解过程反应器设计和工艺工程放大。此外,指出建立对分子集构建、反应网络构建和动力学参数求解的集成化平台是分子尺度反应动力学发展的必然趋势。
中图分类号:
刘东阳, 白宇恩, 张霖宙, 张宇豪, 赵亮, 高金森, 徐春明. 分子尺度反应动力学模型构建在催化裂化/裂解过程中的应用进展[J]. 化工进展, 2021, 40(4): 2082-2091.
LIU Dongyang, BAI Yu’en, ZHANG Linzhou, ZHANG Yuhao, ZHAO Liang, GAO Jinsen, XU Chunming. Application advances of molecular level reaction kinetic modeling for catalytic cracking/pyrolysis process[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2082-2091.
反应类型 | 化学反应 |
---|---|
烷烃裂化 | |
烯烃裂化 | |
烷基芳烃脱烷基 | |
芳烃侧链β-断裂 | |
环烷烃裂化 | |
氢转移反应 | |
环化 | |
芳构化 | |
异构化 | |
缩合反应 | 烯烃与烯烃、烯烃与芳烃及芳烃与芳烃之间的缩合反应 |
烷基转移 |
表1 典型的催化裂化/裂解反应
反应类型 | 化学反应 |
---|---|
烷烃裂化 | |
烯烃裂化 | |
烷基芳烃脱烷基 | |
芳烃侧链β-断裂 | |
环烷烃裂化 | |
氢转移反应 | |
环化 | |
芳构化 | |
异构化 | |
缩合反应 | 烯烃与烯烃、烯烃与芳烃及芳烃与芳烃之间的缩合反应 |
烷基转移 |
碳数 | 实验值 | 预测值 | ||
---|---|---|---|---|
烯烃 | 烷烃+环烷烃 | 烯烃 | 烷烃+环烷烃 | |
C2 | 39 | 61 | 5 | 95 |
C3 | 57 | 43 | 51 | 49 |
C4 | 42 | 58 | 46 | 54 |
C5 | 58 | 42 | 48 | 52 |
C6 | 60 | 40 | 70 | 30 |
C7+C8 | 63 | 37 | 73 | 27 |
C9+C10+C11 | 67 | 33 | 65 | 35 |
表2 正十六烷裂解产物组成(物质的量分数)
碳数 | 实验值 | 预测值 | ||
---|---|---|---|---|
烯烃 | 烷烃+环烷烃 | 烯烃 | 烷烃+环烷烃 | |
C2 | 39 | 61 | 5 | 95 |
C3 | 57 | 43 | 51 | 49 |
C4 | 42 | 58 | 46 | 54 |
C5 | 58 | 42 | 48 | 52 |
C6 | 60 | 40 | 70 | 30 |
C7+C8 | 63 | 37 | 73 | 27 |
C9+C10+C11 | 67 | 33 | 65 | 35 |
向量类型 | 芳烃 | 环烃 | CH2碳 | 分支点 | 甲基 | 氢 | 联桥 | 硫 | 氮 | 氧 |
---|---|---|---|---|---|---|---|---|---|---|
结构向量 | A6 A4 A2 | N6 N5 N4 N3 N2 N1 | R | Br | Me | IH | AA | NS RS | AN NN RN | NO RO KO |
表3 Mobil公司提出的22个特征结构单元
向量类型 | 芳烃 | 环烃 | CH2碳 | 分支点 | 甲基 | 氢 | 联桥 | 硫 | 氮 | 氧 |
---|---|---|---|---|---|---|---|---|---|---|
结构向量 | A6 A4 A2 | N6 N5 N4 N3 N2 N1 | R | Br | Me | IH | AA | NS RS | AN NN RN | NO RO KO |
1 | ISHIHARA A. Preparation and reactivity of hierarchical catalysts in catalytic cracking[J]. Fuel Processing Technology, 2019, 194: 106116. |
2 | RAHIMI N, KARIMZADEH R. Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: a review[J]. Applied Catalysis A: General, 2011, 398(1/2): 1-17. |
3 | 许友好. 我国催化裂化工艺技术进展[J]. 中国科学: 化学, 2014, 44(1): 13-24. |
XU Youhao. Advance in China fluid catalytic cracking (FCC) process[J]. Scientia Sinica Chimica, 2014, 44(1): 13-24. | |
4 | 王涛. 催化裂化与油品调合集成优化[D]. 大连: 大连理工大学,2017. |
WANG Tao. Integrated optimization of refinery oil blending and catalytic cracking[D]. Dalian: Dalian University of Technology, 2017. | |
5 | 尤廷正. 浅谈丙烯生产技术[J]. 广东化工, 2018, 45(2): 125-126. |
YOU Tingzheng. Introduction to propylene production enhancement technology[J]. Guangdong Chemical Industry, 2018, 45(2): 125-126. | |
6 | WANG Ruipu, LI Yuming, JIANG Guiyuan, et al. An efficient head-tail co-conversion process for high quality gasoline via rational catalytic cracking[J]. Chemical Engineering Journal, 2020, 396: 125210. |
7 | 李中华, 肖武, 阮雪华, 等. 加氢裂化反应动力学建模研究进展[J]. 化工进展, 2016, 35(4): 988-994. |
LI Zonghua, XIAO Wu, RUAN Xuehua, et al. Research progress of hydrocracking reaction kinetic model[J]. Chemical Industry and Engineering Progress, 2016, 35(4): 988-994. | |
8 | 张霖宙, 陈政宇, 吕文进, 等. 石油加工分子管理平台构建[J]. 中国科学: 化学, 2018, 48(4): 411-426. |
ZHANG Linzhou, CHEN Zhengyu, Wenjin LYU, et al. Development of petroleum refining molecular management modeling platform[J]. Scientia Sinica Chimica, 2018, 48(4): 411-426. | |
9 | 张霖宙, 赵锁奇, 史权, 等. 石油分子表征与分子层次模型构建:前沿及挑战[J]. 中国科学: 化学, 2020, 50(2): 192-203. |
ZHANG Linzhou, ZHAO Suoqi, SHI Quan, et al. Molecular characterization and modeling of petroleum refining process: frontiers and challenges[J]. Scientia Sinica Chimica, 2020, 50(2): 192-203. | |
10 | 欧阳福生, 王磊, 王胜, 等. 催化裂解过程分子尺度反应动力学模型研究[J]. 高校化学工程学报, 2008, 22(6): 927-934. |
OUYANG Fusheng, WANG Lei, WANG Sheng, et al. Molecular reaction kinetics model for deep catalytic cracking[J]. Journal of Chemical Engineering of Chinese Universities, 2008, 22(6): 927-934. | |
11 | 欧阳福生, 王胜, 翁惠新. 催化裂解过程分子尺度的反应动力学模拟Ⅱ.反应动力学模型的建立[J]. 华东理工大学学报(自然科学版), 2008, 34(1): 29-35. |
OUYANG Fusheng, WANG Sheng, WENG Huixin. Molecular reaction kinetics simulation for deep catalytic cracking Ⅱ. Establishment of reaction kinetics model[J]. Journal of East China University of Science and Technology ( Natural Science Edition), 2008, 34(1): 29-35. | |
12 | LIGURAS Dimitris K, ALLEN David T. Structural models for catalytic cracking. 1. Model compound reactions[J]. Industrial & Engineering Chemistry Research, 1989, 28(6): 665-673. |
13 | LIGURAS Dimitris K, ALLEN David T. Structural models for catalytic cracking. 2. Reactions of simulated oil mixtures[J]. Industrial & Engineering Chemistry Research, 1989, 28(6): 674-683. |
14 | BALTANAS Miguel A, FROMENT Gilbeat F. Computer generation of reaction networks and calculation of product distributions in the hydroisomerization and hydrocracking of paraffins on Pt-containing bifunctional catalysts [J]. Computers & Chemical Engineering, 1985, 9(1): 71-81 |
15 | Ivar UGI, BAUER Johannes, BRANDT Josef, et al. New applications of computers in chemistry[J]. Angewandte Chemie International Edition, 1979, 18(2): 111-123. |
16 | DUGUNDJI James, Ivar UGI. An algebraic model of constitutional chemistry as a basis for chemical computer programs[J]. Computer in Chemistry, 1973, 4(36): 19-64. |
17 | QUANN R J, JAFFE S B. Structure-oriented lumping: Describing the chemistry of complex hydrocarbon mixtures [J]. Industrial & Engineering Chemistry Research, 1992, 31(11): 2483-2497. |
18 | CHEN Zhengyu, FENG Song, ZHANG Linzhou, et al. Molecular level kinetic modeling of heavy oil FCC process based on hybrid structural unit and bond-electron matrix[J]. AIChE Journal, 2021, 67(1): e17027. |
19 | HOLLANDER M A DEN, WISSINK M, MAKKEE M, et al. Gasoline conversion: Reactivity towards cracking with equilibrated FCC and ZSM-5 catalysts[J]. Applied Catalysis A General, 2002, 223(1/2): 85-102. |
20 | OLAH George A, DEMEMBER John R, SHEN Jacob. Electrophilic reactions at single bonds. X. Hydrogen transfer, alkylation, and alkylolysis of alkanes with methyl and ethyl fluoroantimonate[J]. Journal of the American Chemical Society, 1973, 95(15): 4952-4956. |
21 | OLAH George A, OLAH J A. Electrophilic reactions at single bonds. IV. Hydrogen transfer from, alkylation of, and alkylolysis of alkanes by alkylcarbenium fluoroantimonates[J]. Journal of the American Chemical Society, 1971, 93(5): 1256-1259. |
22 | OLAH George A, HALPERN Y, SHEN J, et al. Electrophilic reactions at single bonds. III. H-D exchange and protolysis (deuterolysis) of alkanes with superacids. The mechanism of acid-catalyzed hydrocarbon transformation reactions involving the sigma electron pair donor ability of single bonds via three-center bond formation[J]. Journal of the American Chemical Society, 1971, 93(5): 1251-1256. |
23 | WHITMORE Frank C. Mechanism of the ploymerization of olefins by acid catalysts[J]. Industrial & Engineering Chemistry, 1934, 26(1): 94-95. |
24 | OLAH George A, KIOVSKY Thomas E. Stable carbonium ions. LXV. Protonation of hydrogen cyanide and alkyl nitriles in FSO3H-SbF5-SO2 solution. Comparative study of Meerwein’s N-alkyl nitrilium ions[J]. Journal of the American Chemical Society, 1968, 90(17): 4666-4672. |
25 | MENG Xianghai, XU Chunming, GAO Jinsen, et al. Studies on catalytic pyrolysis of heavy oils: Reaction behaviors and mechanistic pathways[J]. Applied Catalysis A: General, 2005, 294(2): 168-176. |
26 | 刘东阳. 费-托蜡裂解混合α-烯烃齐聚制备润滑油基础油[D]. 抚顺: 辽宁石油化工大学, 2019. |
LIU Dongyang. Preparation of synthetic lubricating base oil by oligomerization of Fischer-Tropsch wax cracking mixed α-olefins[D]. Fushun: Liaoning Shihua University, 2019. | |
27 | 徐春明, 杨朝合. 石油炼制工程[M]. 4版. 北京: 石油工业出版社, 2009: 302-303. |
XU Chunming, YANG Chaohe. Petroleum refining engineering[M]. 4th ed. Beijing: Petroleum Industry Press, 2009: 302-303. | |
28 | 祝然. 结构导向集总新方法构建催化裂化动力学模型及其应用研究[D]. 上海: 华东理工大学, 2013. |
ZHU Ran. Construction catalytic cracking kinetic model based on structure oriented lumping new method and study on its application[D]. Shanghai: East China University of Science and Technology, 2013. | |
29 | 薛高平. 催化裂化单事件微反应动力学模型研究[D]. 上海: 华东理工大学, 2013. |
XUE Gaoping. Research on single-event microkinetic (SEMK) modeling of catalytic cracking[D]. Shanghai: East China University of Science and Technology, 2013. | |
30 | BALTANAS Miguel A, RAEMDONCK Kristiaan K VAN, FROMENT Gilbert F, et al. Fundamental kinetic modeling of hydroisomerization and hydrocracking on noble metal-loaded faujasites. 1. Rate parameters for hydroisomerization[J]. Industrial & Engineering Chemistry Research, 1989, 28(7): 899-910. |
31 | FENG Wu, VYNCKIER Erik, FROMRNT Gilbert F. Single-event kinetics of catalytic cracking[J]. Industrial & Engineering Chemistry Research, 1993, 32(12): 2997-3005. |
32 | DEWACHTERE N V, SANTAELLA F, FROMENT G F. Application of a single-event kinetic model in the simulation of an industrial riser reactor for the catalytic cracking of vacuum gas oil[J]. Chemical Engineering Science, 1999, 54(15): 3653-3660. |
33 | QUINTANA-SOLÓRZANO R, THYBAUT Joris W, MARIN Guy B. A single-event microkinetic analysis of the catalytic cracking of (cyclo)alkanes on an equilibrium catalyst in the absence of coke formation[J]. Chemical Engineering Science, 2007, 62(18-20): 5033-5038. |
34 | Roberto QUINTANA-SOLÓRZANO, THYBAUT Joris W, MARIN Guy B, et al. Single-event microkinetics for coke formation in catalytic cracking[J]. Catalysis Today, 2005, 107-108: 619-629. |
35 | Roberto QUINTANA-SOLÓRZANO, THYBAUT Joris W, GALTIER P, et al. Single-event microkinetics for coke formation during the catalytic cracking of (cyclo)alkane/1-octene mixtures[J]. Catalysis Today, 2007, 127(1/2/3/4): 17-30. |
36 | BORM Rhona VAN, REYNIERS Marie-Francoise, MARIN Guy B. Catalytic cracking of alkanes on FAU: Single-event microkinetic modeling including acidity descriptors[J]. AIChE Journal, 2012, 58(7): 2202-2215. |
37 | WEI W, BENNETT Craig A, TANAKA Ryuzo, et al. Computer aided kinetic modeling with KMT and KME[J]. Fuel Processing Technology, 2008, 89(4): 350-363. |
38 | BROADBELT Linda J, STARK Scott M, KLEIN Michael T. Computer generated pyrolysis modeling: On-the-fly generation of species, reactions, and rates[J]. Industrial & Engineering Chemistry Research, 1994, 33(4): 790-799. |
39 | WATSON Beth A, KLEIN Michael T, HARDING Robert H. Mechanistic modeling of n-heptane cracking on HZSM-5[J]. Industrial & Engineering Chemistry Research, 1996, 35(5): 1506-1516. |
40 | WATSON Beth A, KLEIN Michael T, HARDING Robert H. Mechanistic modeling of a 1-phenyloctane/n-hexadecane mixture on rare earth Y zeolite[J]. Industrial & Engineering Chemistry Research, 1997, 36(8): 2954-2963. |
41 | WATSON Beth A, KLEIN Michael T, HARDING Robert H. Catalytic cracking of alkylcyclohexanes: modeling the reaction pathways and mechanisms[J]. International Journal of Chemical Kinetics, 1997, 29(7): 545-560. |
42 | CHRISTENSEN Gary, APELIAN Minas R, HICKEY Karlton J, et al. Future directions in modeling the FCC process: an emphasis on product quality[J]. Chemical Engineering Science, 1999, 54(13): 2753-2764. |
43 | 孙忠超, 山红红, 刘熠斌, 等. 基于结构导向集总的FCC汽油催化裂解分子尺度动力学模型[J]. 化工学报, 2012, 63(2): 486-492. |
SUN Zhongchao, SHAN Honghong, LIU Yibin, et al. Molecular kinetic model for catalytic pyrolysis of FCC gasoline by structure-oriented lumping[J]. CIESC Journal, 2012, 63(2): 486-492. | |
44 | YANG Bolun, ZHOU Xiaowei, CHEN Chun, et al. Molecule simulation for the secondary reactions of fluid catalytic cracking gasoline by the method of structure oriented lumping combined with Monte Carlo[J]. Industrial & Engineering Chemistry Research, 2008, 47(14): 4648-4657. |
45 | 马法书, 袁志涛, 翁惠新. 分子尺度的复杂反应体系动力学模拟(Ⅰ): 原料分子的Monte Carlo模拟[J]. 化工学报, 2003, 54(11): 1539-1545. |
MA Fashu, YUAN Zhitao, WENG Huixin. Molecular kinetics of complex reaction systems (Ⅰ): Monte Carlo simulation of feedstock[J]. Journal of Chemical Industry and Engineering(China), 2003, 54(11): 1539-1545. | |
46 | 马法书, 袁志涛, 翁惠新. 分子尺度的复杂反应体系动力学模拟(Ⅱ): DCC-Ⅰ反应动力学模型的建立[J]. 化工学报, 2003, 54(11): 1546-1551. |
MA Fashu, YUAN Zhitao, WENG Huixin. Molecular kinetics of complex reaction systems (Ⅱ): Simulation of deep catalytic cracking[J]. Journal of Chemical Industry and Engineering(China), 2003, 54(11): 1546-1551. | |
47 | 陈华, 皮志鹏, 刘逸锋, 等. 基于结构导向集总的催化裂化MIP工艺反应动力学模型. Ⅰ.模型的建立和验证[J]. 石油化工, 2017, 46(4): 395-402. |
CHEN Hua, PI Zhipeng, LIU Yifeng, et al. Reaction kinetic model for catalytic cracking MIP technology using structureoriented lumping method. Ⅰ. Establishment and verification of the model[J]. Petrochemical Technology, 2017, 46(4): 395-402. | |
48 | 刘纪昌, 陈华, 皮志鹏. 基于结构导向集总的催化裂化MIP工艺反应动力学模型. II.工业装置的计算与预测[J]. 石油化工, 2017, 46(5): 519-523. |
LIU Jichang, CHEN Hua, PI Zhipeng. Reaction kinetic model for catalytic cracking MIP technology using structure oriented lumping method. Ⅱ. Simulation of a commercial unit[J]. Petrochemical Technology, 2017, 46(5): 519-523. | |
49 | ZHU Ran, SHEN Bexian, LIU Jichang, et al. A kinetic model for catalytic cracking of vacuum gas oil using a structure-oriented lumping method[J]. Energy Sources, 2012, 34(22): 2066-2072. |
50 | CHEN Jincai, FANG Zhou, QIU Tong. Molecular reconstruction model based on structure oriented lumping and group contribution methods[J]. Chinese Journal of Chemical Engineering, 2018, 26(8): 1677-1683. |
51 | CHEN Zhengyu, FENG Song, ZHANG Linzhou, et al. Molecular-level kinetic modelling of fluid catalytic cracking slurry oil hydrotreating[J]. Chemical Engineering Science,2019, 195: 619-630. |
52 | 陈政宇. 分子尺度反应动力学模型构建及在重油催化转化过程中的应用[D]. 北京: 中国石油大学(北京), 2019. |
CHEN Zhengyu. Development and application of molecular-level kinetic model for catalytic conversion of heavy oil[D]. Beijing: China University of Petroleum (Beijing), 2019. | |
53 | FAULON Jean-Loup, SAULT Allen G. Stochastic generator of chemical structure. 3. Reaction network generation[J]. Journal of Chemical Information Computer Science, 2001, 41(4): 894-908. |
54 | 石铭亮. 复杂反应系统分子尺度反应动力学研究——催化重整单事件反应动力学模型的建立[D]. 上海: 华东理工大学, 2011. |
SHI Mingliang. Study on molecular level kinetics of complex reaction systems—Construction of single-event kinetic model of catalytic reforming[D].Shanghai: East China University of Science and Technology, 2011. | |
55 | 何杉. 催化裂化油浆加工过程分子转化模拟[D]. 北京: 中国石油大学(北京), 2017. |
HE Shan. Molecular-level modeling of FCC slurry oil conversion[D]. Beijing: China University of Petroleum (Beijing), 2017. | |
56 | 徐春明, 张霖宙, 史权. 石油炼化分子管理基础[M]. 北京: 科学出版社, 2019: 72-84. |
XU Chunming, ZHANG Linzhou, SHI Quan. Molecular management of petroleum refining[M]. Beijing: Science Press, 2019: 72-84. | |
57 | PETTI Thomas F, TRAUTH Daniel M, STARK Scott M, et al. CPU issues in the representation of the molecular structure of petroleum resid through characterization, reaction, and Monte Carlo modeling[J]. Energy & Fuels, 1994, 8(3): 570-575. |
58 | CAMPBELL Darin M, KLEIN Michael T. Construction of a molecular representation of a complex feedstock by Monte Carlo and quadrature methods[J]. Applied Catalysis A: General, 1997, 160(1): 41-54. |
59 | HUDEBINE Damien, VERSTRAETE Jan J. Reconstruction of petroleum feedstocks by entropy maximization. Application to FCC gasolines[J]. Oil & Gas Science and Technology, 2011, 66(3): 437-460. |
60 | VERSTRAETE Jan J, SCHNONGS Ph, DULOT H, et al. Molecular reconstruction of heavy petroleum residue fractions[J]. Chemical Engineering Science, 2010, 65(1): 304-312. |
61 | GEEM Kevin M VAN, HUDEBINE Damien, REYNIERS Marie Francoise. Molecular reconstruction of naphtha steam cracking feedstocks based on commercial indices[J]. Computers and Chemical Engineering, 2007, 31(9): 1020-1034. |
62 | GEEM Kevin M VAN, REYNIERS Marie-Francoise, MARIN Guy B, et al. Automatic reaction network generation using RMG for steam cracking of n-hexane[J]. AIChE Journal, 2010, 52(2): 718-730. |
63 | VANDEWIELE Nick M, GEEM Kevin M VAN, REYNIERS Marie-Francoise, et al. Genesys: kinetic model construction using chemo-informatics[J]. Chemical Engineering Journal, 2012, 207/208: 526-538. |
64 | RANGARAJAN Srinivas, KAMINSKI Ted, Eric VAN WYK, et al. Language-oriented rule-based reaction network generation and analysis: algorithms of RING[J]. Computers and Chemical Engineering, 2014, 64: 124-137. |
65 | RANGARAJAN Srinivas, BHAN Aditya, DAOUTIDIS Prodromos. Identification and analysis of synthesis routes in complex catalytic reaction networks for biomass upgrading[J]. Applied Catalysis B Environmental, 2014, 145: 149-160. |
66 | RANGARAJAN Srinivas, BHAN Aditya, DAOUTIDIS Prodromos. Language-oriented rule-based reaction network generation and analysis: description of RING[J]. Computers and Chemical Engineering, 2012, 45: 114-123. |
67 | RANGARAJAN Srinivas, BHAN Aditya, DAOUTIDIS Prodromos. Language-oriented rule-based reaction network generation and analysis: applications of RING[J]. Computers and Chemical Engineering, 2012, 46(15): 141-152. |
[1] | 盛维武, 程永攀, 陈强, 李小婷, 魏嘉, 李琳鸽, 陈险峰. 微气泡和微液滴双强化脱硫反应器操作分析[J]. 化工进展, 2023, 42(S1): 142-147. |
[2] | 黄益平, 李婷, 郑龙云, 戚傲, 陈政霖, 史天昊, 张新宇, 郭凯, 胡猛, 倪泽雨, 刘辉, 夏苗, 主凯, 刘春江. 三级环流反应器中气液流动与传质规律[J]. 化工进展, 2023, 42(S1): 175-188. |
[3] | 徐晨阳, 都健, 张磊. 基于图神经网络的化学反应优劣评价[J]. 化工进展, 2023, 42(S1): 205-212. |
[4] | 许家珩, 李永胜, 罗春欢, 苏庆泉. 甲醇水蒸气重整工艺的优化[J]. 化工进展, 2023, 42(S1): 41-46. |
[5] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[6] | 许友好, 王维, 鲁波娜, 徐惠, 何鸣元. 中国炼油创新技术MIP的开发策略及启示[J]. 化工进展, 2023, 42(9): 4465-4470. |
[7] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[8] | 罗成, 范晓勇, 朱永红, 田丰, 崔楼伟, 杜崇鹏, 王飞利, 李冬, 郑化安. 中低温煤焦油加氢反应器不同分配器中液体分布的CFD模拟[J]. 化工进展, 2023, 42(9): 4538-4549. |
[9] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[10] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[11] | 邓建, 王凯, 骆广生. 面向硝基化学品安全生产的绝热连续微反应技术发展及思考[J]. 化工进展, 2023, 42(8): 3923-3925. |
[12] | 常印龙, 周启民, 王青月, 王文俊, 李伯耿, 刘平伟. 废弃聚烯烃的高值化学回收研究进展[J]. 化工进展, 2023, 42(8): 3965-3978. |
[13] | 毛善俊, 王哲, 王勇. 基团辨识加氢:从概念到应用[J]. 化工进展, 2023, 42(8): 3917-3922. |
[14] | 吕程远, 张函, 杨明旺, 杜健军, 樊江莉. 生物成像用二氧杂环丁烷余辉发光体系的研究进展[J]. 化工进展, 2023, 42(8): 4108-4122. |
[15] | 李洞, 王倩倩, 张亮, 李俊, 付乾, 朱恂, 廖强. 非水系纳米流体热再生液流电池串联堆性能特性[J]. 化工进展, 2023, 42(8): 4238-4246. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |