[1] 钱伯章, 李敏. 世界能源结构向低碳燃料转型:BP公司发布2016年世界能源统计年鉴[J]. 中国石油和化工经济分析, 2016, 36(8):35-39. QIAN B Z, LI M. World energy structure to low carbon fuel transition-BP company released:2016 world energy statistical yearbook[J]. China Petroleum and Chemical Economics Analysis, 2016, 36(8):35-39.
[2] TAlBOT C, GARCIA-MOSCOSO J, DRAKE H, et al. Cultivation of microalgae using flash hydrolysis nutrient recycle[J]. Algal Research, 2016, 18:191-197.
[3] 徐春明, 焦志亮, 王晓丹, 等. 微藻作原料生产生物柴油的研究现状和前景[J]. 现代化工, 2015, 35(8):1-5. XU C M, JIAO Z L, WANG X D, et al. Research status and prospect of production of biodiesel from microalgae as raw materials[J]. Modern Chemical Industry, 2015, 35(8):1-5.
[4] PATEL B, ARCELUS-ARRILLAGA P, IZADPANAH A, et al. Catalytic hydrotreatment of algal biocrude from fast hydrothermal liquefaction[J]. Renewable Energy, 2017, 101:1094-1101.
[5] ZHU Z, SI B, LU J, et al. Elemental migration and characterization of products during hydrothermal liquefaction of cornstalk[J]. Bioresource Technology, 2017, 243:9-16.
[6] DIMITRIADIS, BEZERGIANNI S. Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production:a state of the art review[J]. Renewable and Sustainable Energy Reviews, 2017, 68:113-125.
[7] ARUN J, SHREEKANTH S J, SAHANA R, et al. Studies on influence of process parameters on hydrothermal catalytic liquefaction of microalgae (Chlorella vulgaris) biomass grown in wastewater[J]. Bioresource Technology, 2017, 244:963-968.
[8] ZHANG B, LIN Q, ZHANG Q, et al. Catalytic hydrothermal liquefaction of Euglena sp. microalgae over zeolite catalysts for the production of bio-oil[J]. RSC Adv., 2017, 7(15):8944-8951.
[9] SHAKYA R, ADHIKARI S, MAHADEVAN R, et al. Influence of biochemical composition during hydrothermal liquefaction of algae on product yields and fuel properties[J]. Bioresource Technology, 2017, 243:1112-1120.
[10] 任海涛, 郭放, 杨晓奕. 中国微藻航空煤油制备潜能及CO2减排[J]. 北京航空航天大学学报, 2016, 42(5):912-919. REN H T, GUO F, YANG X Y. Preparation potential and CO2 emission reduction of Chinese aviation kerosene[J]. Journal of Beihang University, 2016, 42(5):912-919.
[11] CHIARAMONTI D, PRUSSI M, BUFFI M, et al. Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production[J]. Applied Energy, 2017, 185:963-972.
[12] HU Z, ZHENG Y, YAN F, et al. Bio-oil production through pyrolysis of blue-green algae blooms (BGAB):product distribution and bio-oil characterization[J]. Energy, 2013, 52(2):119-125.
[13] SUDASINGHE, REDDY H, CSAKAN N, et al. Temperature-dependent lipid conversion and nonlipid composition of microalgal hydrothermal liquefaction oils monitored by Fourier transform ion cyclotron resonance mass spectrometry[J]. Bioenergy Research, 2015, 8(4):1962-1972.
[14] KIM S W, KOO B S, LEE D H. A comparative study of bio-oils from pyrolysis of microalgae and oil seed waste in a fluidized bed[J]. Bioresource Technology, 2014, 162:96-102.
[15] JENA U, DAS K C. Comparative evaluation of thermochemical liquefaction and pyrolysis for bio-oil production from microalgae[J]. Energy Fuels, 2011, 25(11):5472-5482.
[16] MADSEN R B, ZHANG H, BILLER P, et al. Characterizing semivolatile organic compounds of biocrude from hydrothermal liquefaction of biomass[J]. Energy & Fuels, 2017, 31(4):4122-4134.
[17] GUO Q, MAN W, KAI W, et al. Catalytic hydrodeoxygenation of algae bio-oil over bimetallic Ni-Cu/ZrO2 catalysts[J]. Industrial & Engineering Chemistry Research, 2015, 54(3):890-899.
[18] TOOR S S, ROSENDAHL L, RUDOLF A. Hydrothermal liquefaction of biomass:a review of subcritical water technologies[J]. Energy, 2011, 36(5):2328-2342.
[19] WANG M, LEE E, DILBECK M P, et al. Thermal pretreatment of microalgae for biomethane production:experimental studies, kinetics and energy analysis[J]. Journal of Chemical Technology & Biotechnology, 2017, 92(2):399-407.
[20] BHAVSAR P, ZOCCOLA M, PATRUCCO A, et al. Comparative study on the effects of superheated water and high temperature alkaline hydrolysis on wool keratin[J]. Textile Research Journal, 2017, 87(14):1696-1705.
[21] ABDELMOEZ W, TOMOMI NAKAHASI A, YOSHIDA H. Amino acid transformation and decomposition in saturated subcritical water conditions[J]. International Journal of Chemical Reactor Engineering, 2010, 8(1):5286-5294.
[22] SHEEHANT J D, SAVAGE P E. Products, pathways, and kinetics for the fast hydrothermal liquefaction of soy protein isolate[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(12):6931-6939.
[23] HUANG Y, CHEN Y, XIE J, et al. Bio-oil production from hydrothermal liquefaction of high-protein high-ash microalgae including wild Cyanobacteria sp. and cultivated Bacillariophyta sp.[J]. Fuel, 2016, 183:9-19.
[24] HU Y, FENG S, XU C, et al. Production of low-nitrogen bio-crude oils from microalgae pre-treated with pre-cooled NaOH/urea solution[J]. Fuel, 2017, 206:300-306.
[25] PALARDY O, BEHNKE C, LAURENS L M L. Fatty amide determination in neutral molecular fractions of green crude hydrothermal liquefaction oils from algal biomass[J]. Energy & Fuels, 2017, 31(8):8275-8282.
[26] KOCSISOVA T, JUHASZ J, CVENGRO J, et al. Hydrolysis of fatty acid esters in subcritical water[J]. European Journal of Lipid Science & Technology, 2006, 108(8):652-658.
[27] BÜHLER W, DINJUS E, EDERER H J, et al. Ionic reactions and pyrolysis of glycerol as competing reaction pathways in near-and supercritical water[J]. Journal of Supercritical Fluids, 2002, 22(1):37-53.
[28] XIE G, CHEN Y, BEI K, et al. Hydrothermal liquefaction phase behavior of microalgae & model compounds in fused silica capillary reactor[J]. International Journal of Green Energy, 2017, 14(11):861-867.
[29] MA W, DU G, LI J, et al. Supercritical water pyrolysis of sewage sludge[J]. Waste Management, 2017, 59:371-378.
[30] VO T K, KIM S-S, HOANG VU L, et al. A general reaction network and kinetic model of the hydrothermal liquefaction of microalgae Tetraselmis sp.[J]. Bioresource Technology, 2017, 241:610-619.
[31] ORTIZ-TENA J G, RUEHMANN B, SCHIEDER D, et al. Revealing the diversity of algal monosaccharides:fast carbohydrate fingerprinting of microalgae using crude biomass and showcasing sugar distribution in Chlorella vulgaris by biomass fractionation[J]. Algal Research:Biomass Biofuels and Bioproducts, 2016, 17:227-235.
[32] YIN S, TAN Z. Hydrothermal liquefaction of cellulose to bio-oil under acidic, neutral and alkaline conditions[J]. Applied Energy, 2012, 92:234-239.
[33] SONG W, WANG S, GUO Y, et al. Bio-oil production from hydrothermal liquefaction of waste Cyanophyta biomass:influence of process variables and their interactions on the product distributions[J]. International Journal of Hydrogen Energy, 2017, 42(31):20361-20374.
[34] JIN B, DUAN P, ZHANG C, et al. Non-catalytic liquefaction of microalgae in sub-and supercritical acetone[J]. Chemical Engineering Journal, 2014, 254:384-392.
[35] KUMAR G, SHOBANA S, CHEN W-H, et al. A review of thermochemical conversion of microalgal biomass for biofuels:chemistry and processes[J]. Green Chem., 2017, 19(1):44-67.
[36] SABER M, GOLZARY A, HOSSEINPOUR M, et al. Catalytic hydrothermal liquefaction of microalgae using nanocatalyst[J]. Applied Energy, 2016, 183:566-576.
[37] VALDEZ P J, NELSON M C, FAETH J L, et al. Hydrothermal liquefaction of bacteria and yeast monocultures[J]. Energy & Fuels, 2014, 28(1):67-75.
[38] ZHOU D, ZHANG L, ZHANG S, et al. Hydrothermal liquefaction of macroalgae enteromorpha prolifera to bio-oil[J]. Energy & Fuels, 2010, 24(7):4054-4061.
[39] BROWN T M, DUAN P, SAVAGE P E. Hydrothermal liquefaction and gasification of nannochloropsis sp[J]. Energy & Fuels, 2010, 24(6):3639-3646.
[40] YU G, ZHANG Y, SCHIDEMAN L, et al. Distributions of carbon and nitrogen in the products from hydrothermal liquefaction of low-lipid microalgae[J]. Energy & Environmental Science, 2011, 4(11):4587-4595.
[41] BISWAS B, KUMAR A A, BISHT Y, et al. Effects of temperature and solvent on hydrothermal liquefaction of Sargassum tenerrimum algae[J]. Bioresource Technology, 2017, 242:344-350.
[42] AIDA T M, OSHIMA M, SMITH R L. Controlled conversion of proteins into high-molecular-weight peptides without additives with high-temperature water and fast heating rates[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(9):7709-7715.
[43] BILLER P, SHARMA B K, KUNWAR B, et al. Hydroprocessing of bio-crude from continuous hydrothermal liquefaction of microalgae[J]. Fuel, 2015, 159:197-205.
[44] BOENS B, PILON G, BOURDEAU N, et al. Hydrothermal liquefaction of a wastewater native Chlorella sp. bacteria consortium:biocrude production and characterization[J]. Biofuels, 2016, 7(6):611-619.
[45] PATEL B, GUO M, CHONG C, et al. Hydrothermal upgrading of algae paste:inorganics and recycling potential in the aqueous phase[J]. Science of the Total Environment, 2016, 568:489-497.
[46] SUESSE A R, NORTON G A, VAN LEEUWEN J. Pilot-scale continuous-flow hydrothermal liquefaction of filamentous fungi[J]. Energy & Fuels, 2016, 30(9):7379-7386.
[47] YANG W C, LI X G, LIU S S, et al. Direct hydrothermal liquefaction of undried macroalgae Enteromorpha prolifera using acid catalysts[J]. Energy Conversion & Management, 2014, 87:938-945.
[48] ZOU S P, WU Y L, YANG M D, et al. Production and characterization of bio-oil from hydrothermal liquefaction of microalgae Dunaliella tertiolecta cake[J]. Energy, 2010, 35(12):5406-5411.
[49] BARREIRO D L, GOMEZ B R, HORNUNG U, et al. Hydrothermal liquefaction of microalgae in a continuous stirred-tank reactor[J]. Energy & Fuels, 2015, 29(10):6422-6432.
[50] YANG L, LI Y, SAVAGE P E. Near-and supercritical ethanol treatment of biocrude from hydrothermal liquefaction of microalgae[J]. Bioresource Technology, 2016, 211:779-782.
[51] DING X, HUANG Y, LIAO Q, et al. Medium-low temperature hydrothermal hydrolysis kinetic characteristics of concentrated wet microalgae biomass[J]. International Journal of Agricultural and Biological Engineering, 2017, 10(1):154-162.
[52] FUSHIMI C, UMEDA A. Comparison of biodiesel production by a supercritical methanol method from microalgae oil using solvent extraction and hydrothermal liquefaction processes[J]. Energy & Fuels, 2016, 30(10):7916-7922.
[53] CHEN Y, WU Y, ZHANG P, et al. Direct liquefaction of Dunaliella tertiolecta for bio-oil in sub/supercritical ethanol-water[J]. Bioresour Technol, 2012, 124:190-198.
[54] YANG L, LI Y, SAVAGE P E. Near-and supercritical ethanol treatment of biocrude from hydrothermal liquefaction of microalgae[J]. Bioresour Technol., 2016, 211:779-782.
[55] CAPORGNO M P, PRUVOST J, LEGRAND J, et al. Hydrothermal liquefaction of Nannochloropsis oceanica in different solvents[J]. Bioresour Technol., 2016, 214:404-410.
[56] ROSS A B, BILLER P, KUBACKI M L, et al. Hydrothermal processing of microalgae using alkali and organic acids[J]. Fuel, 2010, 89(9):2234-2243.
[57] JENA U, DAS K C, KASTNER J R. Comparison of the effects of Na2CO3, Ca3(PO4)2, and NiO catalysts on the thermochemical liquefaction of microalga Spirulina platensis[J]. Applied Energy, 2012, 98:368-375.
[58] DUAN P, SAVAGE P E. Hydrothermal liquefaction of a microalga with heterogeneous catalysts[J]. Industrial & Engineering Chemistry Research, 2011, 50(1):52-56.
[59] XU Y, ZHENG X, YU H, et al. Hydrothermal liquefaction of Chlorella pyrenoidosa for bio-oil production over Ce/HZSM-5[J]. Bioresour Technol., 2014, 156(4):1-5.
[60] JENA U, DAS K C, KASTNER J R. Comparison of the effects of Na2CO3, Ca3(PO4)2, and NiO catalysts on the thermochemical liquefaction of microalga Spirulina platensis[J]. Applied Energy, 2012, 98(5):368-375.
[61] LIN Q, CHEN Y, TANG Y, et al. Catalytic hydrothermal liquefaction of D. tertiolecta over multifunctional mesoporous silica-based catalysts with high stability[J]. Microporous and Mesoporous Materials, 2017, 250:120-127.
[62] NAM H, KIM C, CAPAREDA S C, et al. Catalytic upgrading of fractionated microalgae bio-oil (Nannochloropsis oculata) using a noble metal (Pd/C) catalyst[J]. Algal Research-Biomass Biofuels and Bioproducts, 2017, 24:188-198.
[63] BIAN J, ZHANG Q, ZHANG P, et al. Supported Fe2O3 nanoparticles for catalytic upgrading of microalgae hydrothermal liquefaction derived bio-oil[J]. Catalysis Today, 2017, 293:159-166.
[64] YEH T M, DICKINSON J G, FRANCK A, et al. Hydrothermal catalytic production of fuels and chemicals from aquatic biomass[J]. Journal of Chemical Technology & Biotechnology, 2013, 88(1):13-24.
[65] MINOWA T, ZHEN F, OGI T. Cellulose decomposition in hot-compressed water with alkali or nickel catalyst[J]. Journal of Supercritical Fluids, 1998, 13(1/2/3):253-259.
[66] CAO L, ZHANG C, HAO S, et al. Effect of glycerol as co-solvent on yields of bio-oil from rice straw through hydrothermal liquefaction[J]. Bioresource Technology, 2016, 220:471-478.
[67] HU Y, FENG S, YUAN Z, et al. Investigation of aqueous phase recycling for improving bio-crude oil yield in hydrothermal liquefaction of algae[J]. Bioresource Technology, 2017, 239:151-159.
[68] HU Y, GONG M, XU C, et al. Investigation of an alternative cell disruption approach for improving hydrothermal liquefaction of microalgae[J]. Fuel, 2017, 197:138-144.
[69] YU G, ZHANG Y, GUO B, et al. Nutrient flows and quality of bio-crude oil produced via catalytic hydrothermal liquefaction of low-lipid microalgae[J]. BioEnergy Research, 2014, 7(4):1317-1328.
[70] 徐玉福, 俞辉强, 朱利华, 等. 小球藻粉水热催化液化制备生物油[J]. 农业工程学报, 2012, 28(19):194-199. XU Y F, YU H Q, ZHU L H, et al. Preparation of bio oil by hydrothermal liquefaction of Chlorella powder[J]. Chinese Journal of agricultural engineering, 2012, 28(19):194-199.
[71] ZHANG B, KEITZ M V, VALENTAS K. Thermochemical liquefaction of high-diversity grassland perennials[J]. Journal of Analytical & Applied Pyrolysis, 2009, 84(1):18-24.
[72] CHEN Y, MU R, YANG M, et al. Catalytic hydrothermal liquefaction for bio-oil production over CNTs supported metal catalysts[J]. Chemical Engineering Science, 2017, 161:299-307. |