[1] 程昀,李劼,贾明,等. 锂离子电池多尺度数值模型的应用现状及发展前景[J]. 物理学报, 2015(21):145-160. CHENG J, LI J, JIA M, et al. Application status and development prospect of multi-scale lithium ion batteries numerical model[J]. Acta Physica Sinica, 2015(21):145-160.
[2] DOYLE M, FULLER T F, NEWMAN J. Modeling of galvanostatic charge and discharge of the lithium polymer insertion cell[J]. Journal of the Electrochemical Society, 1993, 140(6):1526-1533.
[3] NEWMAN J, TIEDEMANN W. Porous-electrode theory with battery applications[J]. AIChE Journal, 1975, 21(1):25-41.
[4] BOTTE G G, SUBRAMANIAN V R, WHITE R E. Mathematical modeling of secondary lithium batteries[J]. Electrochimica Acta, 2000, 45(15/16):2595-2609.
[5] ZHANG D, POPOV B N, WHITE R E. Modeling lithium intercalation of a single spinel particle under potentiodynamic control[J]. Journal of the Electrochemical Society, 2000, 147(3):831-838.
[6] SANTHANAGOPALAN S, GUO Q, RAMADASS P, et al. Review of models for predicting the cycling performance of lithium ion batteries[J]. Journal of Power Sources, 2006, 156(2):620-628.
[7] FARKHONDEH M, DELACOURT C. Mathematical modeling of commercial LiFePO4 electrodes based on variable solid-state diffusivity[J]. Journal of the Electrochemical Society, 2011, 159(2):A177-A192.
[8] SAFARI M, DELACOURT C. Mathematical modeling of lithium iron phosphate electrode:galvanostatic charge/discharge and path dependence[J]. Journal of the Electrochemical Society, 2011, 158(2):A63-A73.
[9] DARLING R, NEWMAN J. Modeling a porous intercalation electrode with two characteristic particle sizes[J]. Journal of the Electrochemical Society, 1997, 144(12):4201-4208.
[10] NAGARAJAN G S, VAN ZEE J W, SPOTNITZ R M. A mathematical model for intercalation electrode behavior:I. Effect of particle-size distribution on discharge capacity[J]. Journal of the Electrochemical Society, 1998, 145(3):771-779.
[11] MAO Z, FARKHONDEH M, PRITZKER M, et al. Multi-particle model for a commercial blended lithium-ion electrode[J]. Journal of the Electrochemical Society, 2016, 163(3):A458-A469.
[12] RODER F, SONNTAG S, SCHRODER D, et al. Simulating the impact of particle size distribution on the performance of graphite electrodes in lithium-ion batteries[J]. Energy Technology, 2016, 4(12):1588-1597.
[13] MASTALI M M, FARHAD S, FARKHONDEH M, et al. Simplified electrochemical multi-particle model for LiFePO4 cathodes in lithium-ion batteries[J]. Journal of Power Sources, 2015, 275:633-643.
[14] FARKHONDEH M, SAFARI M, PRITZKER M, et al. Full-range simulation of a commercial LiFePO4 electrode accounting for bulk and surface effects:a comparative analysis[J]. Journal of the Electrochemical Society, 2014, 161(3):A201-A212. |