[1] 褚小立,陆婉珍. 近五年我国近红外光谱分析技术研究与应用进展[J]. 光谱学与光谱分析, 2014, 34(10):2595-2605. CHU Xiaoli, LU Wanzhen. Research and application progress of near infrared spectroscopy analytical technology in China in the past five years[J]. Spectroscopy and Spectral Analysis, 2014, 34(10):2595-2605.
[2] 褚小立,陆婉珍. 近红外光谱分析技术在石化领域中的应用[J]. 仪器仪表用户, 2013, 20(2):11-13. CHU Xiaoli, LU Wanzhen. The application of near infrared spectroscopy analytical technology in petrochemical industries[J]. Electronic Instrumentation Customer, 2013, 20(2):11-13.
[3] 徐广通,杨玉蕊,陆婉珍,等. 近红外光谱在线分析技术将优化乙烯生产工艺[J]. 化工进展, 2001, 20(1):22-25. XU Guangtong, YANG Yurui, LU Wanzhen, et al. On-line near-infrared spectroscopy analysis will optimize ethylene producing technology[J]. Chemical Industry and Engineering Progress, 2001, 20(1):22-25.
[4] HE Kaixun, CHENG Hui. A new sample selection and modeling method[J]. Journal of Donghua University, 2014, 31(2):207-211.
[5] 李正风,徐广晋,王家俊,等. 模型诊断用于近红外光谱建模校正集中奇异样本的识别[J]. 分析化学, 2016, 44(2):305-309. LI Zhengfeng, XU Guangjin, WANG Jiajun, et al. Outlier detection for multivariate calibration in near infrared spectroscopic analysis by model diagnostics[J]. Chinese Journal of Analytical Chemistry,2016, 44(2):305-309.
[6] NI W, NØRGAAD L, MØRUP M. Non-linear calibration models for near infrared spectroscopy[J]. Anal. Chim. Acta., 2014, 813:1-14.
[7] RAMBO, M K D, FERREIRA M M C, AMORIM E P. Multi-product calibration models using NIR spectroscopy[J]. Chemometrics and Intelligent Laboratory Systems, 2016, 151:108-114.
[8] MEI Q P, LI T F, YAO L Z, et al. Study of an adaptable calibration model of near-infrared spectra based on KF-PLS[J]. Chemometrics and Intelligent Laboratory Systems, 2016, 157:152-161.
[9] BURNS D A, CIURCZAK E W. Handbook of near-infrared analysis[M]. Florida:CRC Press, 2001.
[10] 刘绪平,胡昌勤,田克仁,等. 近红外光谱定量分析样本选择理论研究进展[J]. 药物分析杂志, 2010(7):1340-1342. LIU Xuping, HU Changqin, TIAN Keren, et al. Review of research on sample selection theoretics of near infrared spectroscopy quantitative analysis[J]. China Pharmaceutical Analysis, 2010(7):1340-1342.
[11] ALLEGRINI F, PIERNA J A F, FRAGOSO W D. Regression models based on new local strategies for near infrared spectroscopic data[J]. Analytica Chimica Acta, 2016, 933:50.
[12] QUIÑONES L, VELAZQUEZ C, OBREGON L. A novel multiple linear multivariate NIR calibration model-based strategy for in-line monitoring of continuous mixing[J]. AIChE Journal, 2014, 60(9):3123-3132.
[13] YE J, WU Z, LIU X, et al. Near infrared spectroscopy in combination with chemometrics as a process analytical technology(PAT) tool for on-line quantitative monitoring of alcohol precipitation[J]. Journal of Pharmaceutical & Biomedical Analysis, 2013, 77(2):32.
[14] HE Kaixun, QIAN F, CHENG H, et al. A novel adaptive algorithm with near-infrared spectroscopy and its application in online gasoline blending processes[J]. Chemometrics and Intelligent Laboratory Systems, 2015, 140:117-125.
[15] ROGGO Y, CHALUS P, MAURER L, et al. A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies[J]. Journal of Pharmaceutical & Biomedical Analysis, 2007, 44(3):683-700.
[16] HE Kaixun, CHENG H, DU W, et al. Online updating of NIR model and its industrial application via adaptive wavelength selection and local regression strategy[J]. Chemometrics and Intelligent Laboratory Systems, 2014, 134:79-88.
[17] 陆婉珍. 现代近红外光谱分析技术[M]. 北京:中国石化出版社, 2007. LU Wanzhen. Modern near infrared spectroscopy analysis technology[M]. Beijing:China Petrochemical Press, 2007.
[18] FERRÉ J, RIUS F X. Constructing D-optimal designs from a list of candidate samples[J]. Trac. Trends in Analytical Chemistry, 1997, 16:70-73.
[19] 李婵,万晓霞,刘强,等. 基于主成分分析的光谱重建训练样本选择方法研究[J]. 光谱学与光谱分析, 2016, 36(5):1400-1405. LI Chan, WAN Xiaoxia, LIU Qiang, et al. Research on the training samples selection for spectral reflectance reconstration based on principal component analysis[J]. Spectroscopy and Spectral Analysis, 2016, 36(5):1400-1405.
[20] 靳召晰,张秀娟,罗付义,等. 近红外光谱建模样本选择方法研究[J]. 光谱学与光谱分析, 2016, 36(12):3920-3925. JIN Zhaoxi, ZHANG Xiujuan, LUO Fuyi, et al. Study of modeling samples selection method based on near infrared spectrum[J]. Spectroscopy and Spectral Analysis, 2016, 36(12):3920-3925. |