化工进展 ›› 2018, Vol. 37 ›› Issue (07): 2516-2523.DOI: 10.16085/j.issn.1000-6613.2017-1846

• 化工过程与装备 • 上一篇    下一篇

基于智能优化算法的软测量模型建模样本优选及应用

贺凯迅, 曹鹏飞   

  1. 山东科技大学电气与自动化工程学院, 山东 青岛 266590
  • 收稿日期:2017-09-04 修回日期:2017-12-25 出版日期:2018-07-05 发布日期:2018-07-05
  • 通讯作者: 贺凯迅(1987-),男,博士,讲师,研究方向为软测量建模、基于数据驱动的故障诊断等。
  • 作者简介:贺凯迅(1987-),男,博士,讲师,研究方向为软测量建模、基于数据驱动的故障诊断等。E-mail:kaixunhe@sdust.edu.cn
  • 基金资助:
    山东省自然科学基金(ZR2017BF026、ZR2017PF002)、中国博士后科学基金及山东科技大学人才引进科研启动基金项目。

Training sample selection method based on intelligent optimization algorithms for soft sensor and its application

HE Kaixun, CAO Pengfei   

  1. College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
  • Received:2017-09-04 Revised:2017-12-25 Online:2018-07-05 Published:2018-07-05

摘要: 根据目标工况合理选择训练样本,是建立软测量模型的关键。传统的训练集样本选择方法难以充分利用因变量信息,而且难以综合考虑样本对模型的影响。为了解决上述问题,本文提出一种基于智能优化算法的训练集样本选择模型,定义了损失函数和样本压缩率,通过权重因子将二者融合为多目标适应度函数,可调整优化算法的寻优方向,使算法能够同时对建模样本组合结构与样本数量寻优,因此极大提高了所选建模样本的质量。为了验证方法的有效性,以汽油调和过程中采集的汽油近红外光谱-研究法辛烷值数据以及柴油近红外基准数据为例,与偏最小二乘、局部权重偏最小二乘等多种方法进行了比较研究,并分析了建模样本对软测量模型的影响。结果表明,本文方法在大规模降低训练集样本规模的同时能够保证软测量模型的精度和泛化性,非常适合工业应用。

关键词: 软测量, 模型, 优化, 数据驱动融合, 近红外

Abstract: Training sample selection is a key step to establish soft sensor models. According to traditional selection methods, the information of dependent variables cannot be used well. In addition, it is difficult to evaluate the impact of training samples on soft sensor models. To handle these issues, in the present paper, a new training sample selection strategy based on intelligent optimization algorithms was proposed. The objective function of our proposed method was combined with a loss function and a compression-ratio operator of training samples which can tune the direction of searching. The advantage is that it can make full use of dependent variables and the effectiveness of training samples in a certain soft sensor model. As a result, it can optimize the structure of selected training samples. The performance of our proposed methods was demonstrated by its practical applications on research octane number(RON)-near infrared(NIR) spectrum data set, which were selected from gasoline blending process. Besides, a diesel NIR spectrum benchmark data set were also provided. Based on these data sets, we analysis and discuss the impact of training samples on soft sensor model, some useful results were gained. Compared with traditional partial least squares method(PLS), locally weighted PLS, and several other modeling strategies, the proposed method was found to achieve good accuracy and robustness, it is very suitable for industrial application.

Key words: soft sensor, model, optimization, data driven fusion, near-infrared spectroscopy

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn