化工进展 ›› 2018, Vol. 37 ›› Issue (07): 2577-2587.DOI: 10.16085/j.issn.1000-6613.2017-2504
梁鼎成, 解强
收稿日期:
2017-12-05
修回日期:
2018-02-05
出版日期:
2018-07-05
发布日期:
2018-07-05
通讯作者:
解强,教授,博士生导师。
作者简介:
梁鼎成(1989-),男,博士研究生。
基金资助:
LIANG Dingcheng, XIE Qiang
Received:
2017-12-05
Revised:
2018-02-05
Online:
2018-07-05
Published:
2018-07-05
摘要: 煤中的碱(土)金属(alkali/alkaline earth metals,AAEM)既可导致设备结渣、腐蚀,对燃烧、气化等反应也有显著的催化作用。识别煤中AAEM的形态,揭示其在煤转化过程中的作用与产生机制,明晰不同形态间的迁移转化规律,是减缓或消除设备玷污、腐蚀,强化催化作用的前提和基础。论文对煤中AAEM赋存形态和分离方法、造成设备积灰腐蚀的机制以及对煤炭燃烧、气化等催化机理的研究做了较为系统的综述性评介,着重探讨AAEM不同形态间相互转化的可能性。结果表明,借助逐级萃取法可将煤中AAEM划分成水溶型、离子交换型、酸溶型和不溶型4种形态,但现有方法存在缺陷,可通过筛选萃取溶剂和规范操作流程进行完善,达到准确分离的目的;AAEM是造成设备玷污、腐蚀,还是催化燃烧、气化,取决于AAEM的物种,对AAEM所起作用与其形态间的关系尚不清晰,需通过研究进一步验证;采用水洗、酸洗、添加剂、混配煤等方法来缓解或消除AAEM有害影响具有局限性,基于不同形态的AAEM可以相互转化,促使有害形态的AAEM向有益形态转化,可为高碱低阶煤洁净高效利用提供新的思路。
中图分类号:
梁鼎成, 解强. 煤中碱(土)金属形态在煤转化过程中的作用及不同形态间转化的研究进展[J]. 化工进展, 2018, 37(07): 2577-2587.
LIANG Dingcheng, XIE Qiang. Occurrence, roles in coal conversion processes, and transformation of alkali/alkaline earth metals in coal: a review[J]. Chemical Industry and Engineering Progress, 2018, 37(07): 2577-2587.
[1] 张守玉,陈川,施大钟,等. 高钠煤燃烧利用现状[J]. 中国电机工程学报, 2013(5):1-12. ZHANG S Y, CHEN C, SHI D Z, et al. Situation of combustion utilization of high sodium coal[J]. Proceedings of the CSEE, 2013(5):1-12. [2] LI C. Some recent advances in the understanding of the pyrolysis and gasification behaviour of Victorian brown coal[J]. Fuel, 2007, 86(12/13):1664-1683. [3] 付子文,王长安,翁青松,等. 水洗对准东煤煤质特性影响的实验研究[J]. 西安交通大学学报, 2014, 48(3):54-60. FU Z W, WANG C A, WENG Q S, et al. Experimental investigation for effect of water washing on Zhundong coal properties[J]. Journal of Xi'an Jiaotong University, 2014, 48(3):54-60. [4] 张文达,王鹏翔,孙绍增,等. 酸洗脱灰对准东次烟煤结构和反应活性的影响[J]. 化工学报, 2017,68(8):3291-3300. ZHANG W D, WANG P X, SUN S Z, et al. Effects of demineralization methods on the structure and reactivity of Zhundong subbituminous coal[J]. CIESC J, 2017,68(8):3291-3300. [5] KRERKKAIWAN S, FUSHIMI C, YAMAMOTO H, et al. Influences of heating rate during coal char preparation and AAEMs on volatile-char interaction with different sources of biomass volatile[J]. Fuel Processing Technology, 2014, 119:10-18. [6] RIZKIANA J, GUAN G, WIDAYATNO W B, et al. Effect of biomass type on the performance of cogasification of low rank coal with biomass at relatively low temperatures[J]. Fuel, 2014, 134:414-419. [7] RIZKIANA J, GUAN G, WIDAYATNO W B, et al. Promoting effect of various biomass ashes on the steam gasification of low-rank coal[J]. Applied Energy, 2014, 133:282-288. [8] ZHU C, QU S, ZHANG J, et al. Distribution, occurrence and leaching dynamic behavior of sodium in Zhundong coal[J]. Fuel, 2017, 190:189-197. [9] 宋维健,宋国良,张海霞,等. 准东高钠煤热解过程中钠的迁移特性实验研究[J]. 燃料化学学报, 2015(1):16-21. SONG W J, SONG G L, ZHANG H X, et al. Experimental study on alkali metal transformation during high-sodium Zhundong coal pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2015(1):16-21. [10] VAN EYK P J, ASHMAN P J, ALWAHABI Z T, et al. The release of water-bound and organic sodium from Loy Yang coal during the combustion of single particles in a flat flame[J]. Combustion and Flame, 2011, 158(6):1181-1192. [11] LIU S, QIAO Y, LU Z, et al. Release and transformation of sodium in kitchen waste during torrefaction[J]. Energy & Fuels,2014,28(3):1911-1917. [12] SONG G, QI X, SONG W, et al. Slagging behaviors of high alkali Zhundong coal during circulating fluidized bed gasification[J]. Fuel, 2016, 186:140-149. [13] WANG X, XU Z, WEI B, et al. The ash deposition mechanism in boilers burning Zhundong coal with high contents of sodium and calcium:a study from ash evaporating to condensing[J]. Applied Thermal Engineering, 2015, 80:150-159. [14] 赵洪宇,任善普,贾晋炜,等. 钙、镍离子3种不同负载方式对褐煤热解-气化特性影响[J]. 煤炭学报, 2015(7):1660-1669. ZHAO H Y, REN S P, JIA J W, et al. Effects of calcium and nickel ions by three different load methods on pyrolysis and gasification characteristics of lignite[J]. Journal of China Coal Society, 2015(7):1660-1669. [15] DING L, ZHOU Z, GUO Q, et al. Catalytic effects of Na2CO3 additive on coal pyrolysis and gasification[J]. Fuel, 2015, 142:134-144. [16] 白向飞,王越,丁华,等. 准东煤中钠的赋存状态[J]. 煤炭学报, 2015, 40(12):2909-2915. BAI X F, WANG Y, DING H, et al. Modes of occurrence of sodium in Zhundong coal[J]. Journal of China Coal Society, 2015, 40(12):2909-2915. [17] 翁青松,王长安,车得福,等. 准东煤碱金属赋存形态及对燃烧特性的影响[J]. 燃烧科学与技术, 2014, 20(3):216-221. WENG Q S, WANG C A, CHE D F, et al. Alkali metal occurrence mode and its influence on combustion characteristics in Zhundong coals[J]. Journal of Combustion Science and Technology, 2014, 20(3):216-221. [18] SONG W, SONG G, QI X, et al. Speciation and distribution of sodium during zhundong coal gasification in a circulating fluidized bed[J]. Energy & Fuels, 2017, 31(2):1889-1895. [19] 齐晓宾,宋国良,宋维健. 准东高碱煤气化过程中碱金属赋存形态迁移转化[J]. 煤炭学报, 2016, 41(4):1011-1017. QI X B, SONG G L, SONG W J. Transformation and migration of alkali metal with different occurrences of Zhundong high-alkali coal during gasification[J]. Journal of China Coal Society, 2016, 41(4):1011-1017. [20] 宋维健,宋国良,齐晓宾,等. 不同预处理方法对准东高碱煤中碱金属含量测定的影响[J]. 燃料化学学报, 2016, 44(2):162-167. SONG W J, SONG G L, QI X B, et al. Effect of pretreatment methods on the determination of alkali metal content in high alkali metal Zhundong coal[J]. Journal of Fuel Chemistry and Technology, 2016, 44(2):162-167. [21] MATSUOKA K, YAMASHITA T, KURAMOTO K, et al. Transformation of alkali and alkaline earth metals in low rank coal during gasification[J]. Fuel, 2008, 87(6):885-893. [22] YANG Y, WU Y, ZHANG H, et al. Improved sequential extraction method for determination of alkali and alkaline earth metals in Zhundong coals[J]. Fuel, 2016, 181:951-957. [23] 陈鸿伟,张志远,翟建军,等. 碱/碱土金属对煤热解影响的研究进展[J]. 热力发电, 2017, 46(1):1-6. CHEN H W, ZHANG Z Y, ZHAI J J, et al. Effect of alkali/alkaline earth metals on coal pyrolysis:research progress[J]. Thermal Power Generation, 2017, 46(1):1-6. [24] SALORINNE K, NISSINEN M. Alkali metal complexation properties of resorcinarene bis-crown ethers:effect of the crown ether functionality and preorganization on complexation[J]. Tetrahedron, 2008, 64(8):1798-1807. [25] STEED J W. First-and second-sphere coordination chemistry of alkali metal crown ether complexes[J]. Coordination Chemistry Reviews, 2001, 215(1):171-221. [26] 张志远,陈鸿伟,于海龙,等. 冠醚对准东煤水洗液中碱/碱土金属离子萃取动力学[J]. 煤炭学报, 2017, 42(3):768-774. ZHANG Z Y, CHEN H W, YU H L, et al. Extraction kinetics of the alkali/alkaline earth metal in Zhundong coal with crown ether[J]. Journal of China Coal Society, 2017, 42(3):768-774. [27] 余德才,曹文娟,吴海玉,等. 离子半径的质量和电量综合因子的标度[J]. 物理化学学报, 2007, 23(5):683-687. YU D C, CAO W J, WU H Y, et al. Ionic radius scale of establishing synthesis factor of ionic mass and electricity[J]. Acta Physico-Chimica Sinica, 2007, 23(5):683-687. [28] WANG C, JIN X, WANG Y, et al. Release and transformation of sodium during pyrolysis of Zhundong coals[J]. Energy & Fuels, 2015, 29(1):78-85. [29] 王智化,李谦,刘敬,等. 准东煤中碱金属的赋存形态及其在热解过程中的迁移规律[J]. 中国电机工程学报, 2014, 34(s1):130-135. WANG Z H, LI Q, LIU J, et al. Occurrence of alkali metals in zhundong coal and its migration during pyrolysis process[J]. Proceedings of the CSEE, 2014, 34(s1):130-135. [30] 陈川,张守玉,刘大海,等. 新疆高钠煤中钠的赋存形态及其对燃烧过程的影响[J]. 燃料化学学报, 2013, 41(7):832-838. CHEN C, ZHANG S Y, LIU D H, et al. Existence form of sodium in high sodium coals from Xinjiang and its effect on combustion process[J]. Journal of Fuel Chemistry and Technology, 2013, 41(7):832-838. [31] LI X, BAI Z, BAI J, et al. Transformations and roles of sodium species with different occurrence modes in direct liquefaction of zhundong coal from Xinjiang, Northwestern China[J]. Energy & Fuels, 2015, 29(9):5633-5639. [32] ZHANG H, GUO X, ZHU Z. Effect of temperature on gasification performance and sodium transformation of Zhundong coal[J]. Fuel, 2017, 189:301-311. [33] LI G, LI S, HUANG Q, et al. Fine particulate formation and ash deposition during pulverized coal combustion of high-sodium lignite in a down-fired furnace[J]. Fuel, 2015, 143:430-437. [34] 宋维健,宋国良,齐晓宾,等. 准东高钠煤气化过程中Na的迁移转化规律[J]. 煤炭学报, 2016, 41(2):490-496. SONG W J, SONG G L, QI X B, et al. Sodium transformation law of Zhundong coal during gasification[J]. Journal of China Coal Society, 2016, 41(2):490-496. [35] SONG G, SONG W, QI X, et al. Transformation characteristics of sodium of Zhundong coal combustion/gasification in circulating fluidized bed[J]. Energy & Fuels, 2016, 30(4):3473-3478. [36] 刘敬,王智化,项飞鹏,等. 准东煤中碱金属的赋存形式及其在燃烧过程中的迁移规律实验研究[J]. 燃料化学学报, 2014, 42(3):316-322. LIU J, WANG Z H, XIANG F P, et al. Modes of occurrence and transformation of alkali metals in Zhundong coal during combustion[J]. Journal of Fuel Chemistry and Technology, 2014, 42(3):316-322. [37] 齐晓宾,宋国良,宋维健,等. 准东高碱煤气化过程中碱金属迁移与结渣特性实验研究[J]. 燃料化学学报, 2015(8):906-913. QI X B, SONG G L, SONG W J, et al. Alkali metal migration and slagging characteristic during Zhundong high-alkali coal gasification[J]. Journal of Fuel Chemistry and Technology, 2015(8):906-913. [38] ZHANG J, HAN C L, YAN Z, et al. The varying characterization of alkali metals (Na, K) from coal during the initial stage of coal combustion[J]. Energy & Fuels, 2001, 15(4):786-793. [39] 余春江,唐艳玲,方梦祥,等. 稻秆热解过程中碱金属转化析出过程试验研究[J]. 浙江大学学报(工学版), 2005(9):161-164. YU C J, TANG Y L, FANG M X, et al. Experimental study on alkali emission during rice straw pyrolysis[J]. Journal of Zhejiang University (Engineering Science), 2005(9):161-164. [40] 孙鑫,赵斌,王子兵,等. SO2和H2O(g)对新疆高钠煤中钠挥发和形态迁移的研究[J]. 燃料化学学报, 2017(10):1178-1184. SUN X, ZHAO B, WANG Z B, et al. Effect of H2O(g) and SO2(g) on the volatilization and transformation of sodium during Xinjiang high sodium coal combustion[J]. Journal of Fuel Chemistry and Technology, 2017(10):1178-1184. [41] WANG Y, WANG Z, HUANG J, et al. Catalytic gasification activity of Na2CO3 and comparison with K2CO3 for a high-aluminum coal char[J]. Energy & Fuels, 2015, 29(11):6988-6998. [42] KWON T W, KIM J R, KIM S D, et al. Catalytic steam gasification of lignite char[J]. Fuel, 1989, 68(4):416-421. [43] LI T, ZHANG L, DONG L, et al. Effects of char chemical structure and AAEM retention in char during the gasification at 900℃ on the changes in low-temperature char-O2 reactivity for Collie sub-bituminous coal[J]. Fuel, 2017, 195:253-259. [44] LI X, BAI Z, BAI J, et al. Effect of Ca2+ species with different modes of occurrence on direct liquefaction of a calcium-rich lignite[J]. Fuel Processing Technology, 2015, 133:161-166. [45] WATANABE H, OKAZAKI K. Effect of minerals on surface morphologies and competitive reactions during char gasification in mixtures of O-2 and CO2[J]. Proceedings of the Combustion Institute, 2015, 35(2):2363-2371. [46] QUYN D M, WU H W, BHATTACHARYA S P, et al. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅱ. Effects of chemical form and valence[J]. Fuel, 2002, 81(2):151-158. [47] DU C, LIU L, QIU P. Importance of volatile AAEM species to char reactivity during volatile-char interactions[J]. RSC Advances, 2017, 7(17):10397-10406. [48] 许慎启,周志杰,代正华,等. 碱金属及灰分对煤焦碳微晶结构及气化反应特性的影响[J]. 高校化学工程学报, 2010, 24(1):64-70. XU S Q, ZHOU Z J, DAI Z H, et al. Effects of alkalimetal and ash on crystallite structure of coal char during pyrolysis and on gasification reactivity[J]. Journal of Chemical Engineering of Chinese Universities, 2010, 24(1):64-70. [49] LI X, HAYASHI J, LI C. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal[J]. Fuel, 2006, 85(12/13):1700-1707. [50] WANG L, MAO H, WANG Z, et al. Transformation of alkali and alkaline-earth metals during coal oxy-fuel combustion in the presence of SO2 and H2O[J]. Journal of Energy Chemistry, 2015, 24(4):381-387. [51] 谢克昌. 煤的结构与反应性[M]. 北京:科学出版社, 2002. XIE K C. Structure and reactivity of coal[M]. Beijing:Science Press, 2002. [52] LI R, CHEN Q, ZHANG H. Detailed investigation on sodium (Na) species release and transformation mechanism during pyrolysis and char gasification of high-Na Zhundong coal[J]. Energy & Fuels, 2017, 31(6):5902-5912. [53] GAO Y, DING L, LI X, et al. Na & Ca removal from Zhundong coal by a novel CO2-water leaching method and the ashing behavior of the leached coal[J]. Fuel, 2017, 210:8-14. [54] LI G, WANG C, YAN Y, et al. Release and transformation of sodium during combustion of Zhundong coals[J]. Journal of the Energy Institute, 2016, 89(1):48-56. [55] ZHANG J, LI J, MAO Y, et al. Effect of CaCO3 addition on ash sintering behaviour during K2CO3 catalysed steam gasification of a Chinese lignite[J]. Applied Thermal Engineering, 2017, 111:503-509. [56] YEBOAH Y D, XU Y, SHETH A, et al. Catalytic gasification of coal using eutectic salts:identification of eutectics[J]. Carbon, 2003, 41(2):203-214. [57] XU L, LIU H, FANG H, et al. Effects of various inorganic sodium salts present in Zhundong coal on the char characteristics[J]. Fuel, 2017, 203:120-127. [58] 卫小芳, 黄戒介, 房倚天, 等. 碱金属对褐煤气化反应性的影响[J]. 煤炭转化, 2007(4):38-42. WEI X F, HUANG J J, FANG Y T, et al. Effect of alkali metal on the lignite gasification reactivity[J]. Coal Conversion, 2007(4):38-42. [59] 刘辉,赵登,姜雷宵,等. 羧酸钠对准东煤热解过程的影响[J]. 化工学报, 2016, 67(11):4795-4801. LIU H, ZHAO D, JIANG L X, et al. Effect of sodium carboxylate on pyrolysis of Zhundong coal(H-form coal)[J]. CIESC Journal, 2016, 67(11):4795-4801. [60] ZHANG Z,PANG S, LEVI T. Influence of AAEM species in coal and biomass on steam co-gasification of chars of blended coal and biomass[J]. Renewable Energy, 2017, 101:356-363. [61] ZHAO Y, QIU P, CHEN G, et al. Selective enrichment of chemical structure during first grinding of Zhundong coal and its effect on pyrolysis reactivity[J]. Fuel, 2017, 189:46-56. [62] WANG Y, ZHU S, GAO M, et al. A study of char gasification in H2O and CO2 mixtures:role of inherent minerals in the coal[J]. Fuel Processing Technology, 2016, 141:9-15. [63] BLAESING M, MUELLER M. Release of alkali metal, sulphur, and chlorine species from high temperature gasification of high-and low-rank coals[J]. Fuel Processing Technology, 2013, 106:289-294. [64] JIANG L, HU S, WANG Y, et al. Catalytic effects of inherent alkali and alkaline earth metallic species on steam gasification of biomass[J]. International Journal of Hydrogen Energy, 2015, 40(45):15460-15469. [65] WU L, QIAO Y, GUI B, et al. Effects of chemical forms of alkali and alkaline earth metallic species on the char ignition temperature of a loy yang coal under O2/N2 atmosphere[J]. Energy & Fuels, 2012, 26(1):112-117. [66] VAN EYK P J, KOSMINSKI A, ASHMAN P J. Control of agglomeration and defluidization during fluidized-bed combustion of south australian low-rank coals[J]. Energy & Fuels, 2012, 26(1):118-129. [67] ZHANG X, LIU H, XING H, et al. Improved sodium adsorption by modified kaolinite at high temperature using intercalation-exfoliation method[J]. Fuel, 2017, 191:198-203. [68] WEI B, WANG X,TAN H, et al. Effect of silicon-aluminum additives on ash fusion and ash mineral conversion of Xinjiang high-sodium coal[J]. Fuel, 2016, 181:1224-1229. [69] YAO Y, JIN J, LIU D, et al. Evaluation of vermiculite in reducing ash deposition during the combustion of high-calcium and high-sodium zhundong coal in a drop-tube furnace[J]. Energy & Fuels, 2016, 30(4):3488-3494. [70] LI J, ZHU M, ZHANG Z, et al. Effect of coal blending and ashing temperature on ash sintering and fusion characteristics during combustion of Zhundong lignite[J]. Fuel, 2017, 195:131-142. [71] LI J, ZHU M, ZHANG Z, et al. The mineralogy, morphology and sintering characteristics of ash deposits on a probe at different temperatures during combustion of blends of Zhundong lignite and a bituminous coal in a drop tube furnace[J]. Fuel Processing Technology, 2016, 149:176-186. [72] ZHANG Z, ZHU M, ZHANG Y, et al. Ignition and combustion characteristics of single particles of Zhundong lignite:effect of water and acid washing[J]. Proceedings of the Combustion Institute, 2017, 36(2):2139-2146. [73] 刘大海,张守玉,陈川,等. 新疆高钠煤脱钠提质过程中钠存在形式[J]. 煤炭学报, 2014, 39(12):2519-2524. LIU D H, ZHANG S Y, CHEN C, et al. Existence form of sodium in the high sodium coals from Xinjiang during its sodium removal process[J]. Journal of China Coal Society, 2014, 39(12):2519-2524. [74] LI G, WANG C, YAN Y, et al. Release and transformation of sodium during combustion of Zhundong coals[J]. Journal of the Energy Institute, 2016, 89(1):48-56. [75] 汉春利,张军,颜峥,等. 钠在煤燃烧初期释放特性的多元相关分析[J]. 燃烧科学与技术, 2002(5):395-398. HAN C L, ZHANG J, YAN Z, et al. Multivariate statistical analysis on the behaviour of sodium of coal in the initial stage of combustion[J]. Journal of Combustion Science and Technology, 2002(5):395-398. [76] WANG Z, WANG L, LIN J, et al. The influence of the addition of sodium on the transformation of alkali and alkaline-earth metals during oxy-fuel combustion[J]. Journal of the Energy Institute, 2017, 91(4):502-512. [77] GUO S, JIANG Y, YU Z, et al. Correlating the sodium release with coal compositions during combustion of sodium-rich coals[J]. Fuel, 2017, 196:252-260. [78] 刘大海,张守玉,涂圣康,等. 五彩湾煤中钠在热解过程中的形态变迁[J]. 燃料化学学报, 2014(10):1190-1196. LIU D H, ZHANG S Y, TU S K, et al. Transformation and release of sodium in Wucaiwan coal pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2014(10):1190-1196. [79] 刘大海,张守玉,涂圣康,等. 五彩湾煤中钠在燃烧过程中的迁移释放规律[J]. 化工进展, 2015, 34(3):705-709. LIU D H, ZHANG S Y, TU S K, et al. Transformation and release of sodium in Wucaiwan coal during combustion[J]. Chemical Industry and Engineering Process, 2015, 34(3):705-709. [80] LI W, WANG L, QIAO Y, et al. Effect of atmosphere on the release behavior of alkali and alkaline earth metals during coal oxy-fuel combustion[J]. Fuel, 2015, 139:164-170. [81] KOSMINSKI A, ROSS D P, AGNEW J B. Transformations of sodium during gasification of low-rank coal[J]. Fuel Processing Technology, 2006, 87(11):943-952. [82] WEI X, HUANG J, LIU T, et al. Transformation of alkali metals during pyrolysis and gasification of a lignite[J]. Energy & Fuels, 2008, 22(3):1840-1844. [83] MANZOORI A R, AGARWAL P K. The fate of organically bound inorganic elements and sodium chloride during fluidized bed combustion of high sodium, high sulphur low rank coals[J]. Fuel, 1992, 71(5):513-522. [84] 杨靖宁,张守玉,姚云隆,等. 高温热解过程中新疆高碱煤中钙的演变[J]. 煤炭学报, 2016(10):2555-2559. YANG J N, ZHANG S Y, YAO Y L, et al. Calcium transformation during the high -temperature pyrolysis process of high-alkali coal from Xinjiang[J]. Journal of China Coal Society, 2016(10):2555-2559. [85] 黄小河,张守玉,杨靖宁,等. 准东煤高温燃烧过程中含钙矿物质的转化规律[J]. 化工学报, 2017, 68(10):3906-3911. HUANG X H, ZHANG S Y, YANG J N, et al. Calcium transformation during Zhundong coal combustion process[J]. CIESC Journal, 2017, 68(10):3906-3911. |
[1] | 王敏, 毛玉红, 陈超, 白丹. 水处理工艺中铝盐水解物的毒性、形态及控制研究进展[J]. 化工进展, 2023, 42(S1): 479-488. |
[2] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[3] | 张婷婷, 潘大伟, 巨晓洁, 刘壮, 谢锐, 汪伟, 褚良银. Hg2+响应型智能凝胶检测光栅的构建与性能[J]. 化工进展, 2023, 42(8): 4143-4152. |
[4] | 龚鹏程, 严群, 陈锦富, 温俊宇, 苏晓洁. 铁酸钴复合碳纳米管活化过硫酸盐降解铬黑T的性能及机理[J]. 化工进展, 2023, 42(7): 3572-3581. |
[5] | 郑昕, 贾里, 王彦霖, 张靖超, 陈世虎, 乔晓磊, 樊保国. 污泥与煤泥混烧对重金属固留特性的影响[J]. 化工进展, 2023, 42(6): 3233-3241. |
[6] | 庄捷, 薛锦辉, 赵斌成, 张文艺. 猪粪厌氧消化进程中重金属与腐殖质的有机结合机制[J]. 化工进展, 2023, 42(6): 3281-3291. |
[7] | 路建美. 柔性吸附材料最新研究进展[J]. 化工进展, 2023, 42(6): 2781-2798. |
[8] | 陈少华, 王义华, 胡强飞, 胡坤, 陈立爱, 李洁. 电化学修饰电极在检测Cr(Ⅵ)中的研究进展[J]. 化工进展, 2023, 42(5): 2429-2438. |
[9] | 庞楠炯, 王晓玲, 廖学品, 石碧. 胶原纤维固化黑荆树单宁对硼同位素的分离[J]. 化工进展, 2023, 42(5): 2616-2625. |
[10] | 杨自强, 李风海, 郭卫杰, 马名杰, 赵薇. 市政污泥热处理过程中磷迁移转化的研究进展[J]. 化工进展, 2023, 42(4): 2081-2090. |
[11] | 陈韶云, 周贤太, 纪红兵. 金属卟啉/碳纳米管仿生催化剂的制备及其在Baeyer-Villiger氧化反应中的催化机理[J]. 化工进展, 2023, 42(3): 1332-1340. |
[12] | 阳清正, 张太亮, 刘从胜, 白毅, 程鑫, 郑存川. 双子型咪唑啉季铵盐缓蚀剂的制备及缓蚀机理[J]. 化工进展, 2023, 42(10): 5436-5444. |
[13] | 苏景振, 詹健. 生物炭对水环境中微塑料的去除研究进展[J]. 化工进展, 2023, 42(10): 5445-5458. |
[14] | 王庆宏, 姜晨旭, 王鑫, 余美琪, 朱帅, 李一鸣, 陈春茂. 天然矿物催化氧化水中难降解有机污染物研究进展[J]. 化工进展, 2023, 42(1): 417-434. |
[15] | 王一茹, 宋小三, 水博阳, 王三反. 胺功能化介孔二氧化硅捕集CO2的研究进展[J]. 化工进展, 2022, 41(S1): 536-544. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |