[1] QU J, WU H Y. Thermal performance comparison of oscillating heat pipes with SiO2/water and Al2O3/water nanofluids[J]. International Journal of Thermal Sciences, 2011, 50(10):1954-1962.
[2] 林梓荣,汪双凤,张伟保,等.功能热流体强化脉动热管的热输送特性[J].化工学报, 2009, 60(6):1373-1379. LIN Z R, WANG S F, ZHANG W B, et al. Heat-transport capability of pulsating heat pipe enhanced by functional thermal fluids[J]. CIESC Journal, 2009, 60(6):1373-1379.
[3] HU Y X, LIU T Q, LI X Y, et al. Heat transfer enhancement of micro oscillating heat pipes with self-rewetting fluid[J]. International Journal of Heat and Mass Transfer, 2014, 70:496-503.
[4] ZHU Y, CUI X Y, HAN H, et al. The study on the difference of the start-up and heat-transfer performance of the pulsating heat pipe with water-acetone mixtures[J]. International Journal of Heat and Mass Transfer, 2014, 77:834-842.
[5] XIAN H Z, LIU D Y, SHANG F M, et al. Experimental study on the heat transfer enhancement of oscillating-flow heat pipe by acoustic capitation[J]. Drying Technology, 2009, 27(4):542-547.
[6] XIAN H Z, XU W J, ZHANG Y N, et al. Experimental investigations of dynamic fluid flow in oscillating heat pipe under pulse heating[J]. Applied Thermal Engineering, 2015, 88:376-383.
[7] HAO T T, MA X H, LAN Z, et al. Effects of hydrophilic surface on heat transfer performance and oscillating motion for an oscillating heat pipe[J]. International Journal of Heat and Mass Transfer, 2014, 72:50-65.
[8] 李孝军,屈健,韩新月,等.微槽道脉动热管的启动及传热特性[J].化工学报, 2016, 67(6):2263-2270. LI X J, QUE J, HAN X Y, et al. Start-up and heat transfer performance of micro-grooved oscillating heat pipe[J]. CIESC Journal, 2016, 67(6):2263-2270.
[9] QU W, LUO X, AI B. Theoretical analysis capillary flow and high performance pulsating heat pipes[C]//Proceedings of the 11th International Heat Pipe Symposium, China, 2013:15-25.
[10] LIU T Y, LI P, LIU C, et al. Boiling flow characteristics in microchannels with very hydrophobic surface to super-hydrophilic surface[J]. International Journal of Heat and Mass Transfer, 2011, 54:126-134.
[11] 纪玉龙,庾春荣,张庆振,等.表面浸润程度对脉动热管传热性能的影响[J].化工学报, 2017, 68(s1):141-149. JI Y L, YU C R, ZHANG Q Z, et al. Effect of surface wettability on heat transfer performance of oscillating heat pipe[J]. CIESC Journal, 2017, 68(s1):141-149.
[12] QU W, MA H B. Theoretical analysis of startup of a pulsating heat pipe[J]. International Journal of Heat and Mass Transfer, 2007, 50(11/12):2309-2316.
[13] XU J J, ZHANG Y W, MA H B. Effect of internal wick structure on liquid-vapor oscillatory flow and heat transfer in an oscillating heat pipe[J]. ASME Journal of Heat Transfer, 2009, 131(12):121012.
[14] ZHU X, WANG H, LIAO Q, et al. Experiments and analysis on self-motion behaviors of liquid droplets on gradient surfaces[J]. Experimental Thermal and Fluid Science, 2009, 33(6):947-954.
[15] CHANDESRIS B, SOUPREMANIEN U, DUNOYER N. Uphill motion of droplets on tilted and vertical grooved substrates induced by a wettability gradient[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2013, 434:126-135.
[16] LAIBINIS P E, WHITESIDES G M. Self-assembled monolayers of n-alkanethiolates on copper are barrier films that protect the metal against oxidation by air[J]. Journal of the American Chemical Society, 1992, 114(23):9022-9028.
[17] YU X, WANG Z, JIANG Y, et al. Surface gradient material:from superhydrophobicity to superhydrophilicity[J]. Langmuir, 2006, 22(10):4483-4486.
[18] ITO Y, HEYDARI M, HASHIMOTO A, et al. The movement of a water droplet on a gradient surface prepared by photodegradation[J]. Langmuir, 2007, 23(4):1845-1850.
[19] SUN C, ZHAO X W, HAN Y H, et al. Control of water droplet motion by alteration of roughness gradient on silicon wafer by laser surface treatment[J]. Thin Solid Films, 2008, 516(12):4059-4063.
[20] WANG L, PENG B, SU Z. Tunable wettability and rewritable wettability gradient from superhydrophilicity to superhydrophobicity[J]. Langmuir, 2010, 26(14):12203-12208.
[21] LI X, DAI H, TAN S, et al. Facile preparation of poly(ethyl α-cyanoacrylate) superhydrophobic and gradient wetting surfaces[J]. Journal of Colloid and Interface Science, 2009, 340(1):93-97.
[22] 俞丽娜,林大为,甘青松,等.正火处理对无取向50W 470电工钢显微组织和磁性能的影响[J].金属热处理, 2007(4):27-30. YU L N, LIN D W, GAN Q S, et al. Effects of normalization on microstructure and magnetic properties of non-oriented 50W 470 electrical steel[J]. Heat Treatment of Metals, 2007(4):27-30.
[23] 傅敏士,肖亚航,刘凤玲.正火处理对20钢内部裂纹愈合的影响[J].热加工工艺, 2005(3):8-10. FU M S, XIAO Y H, LIU F L. Research on inner crack healing of 20 steel by normalizing heat treatment[J]. Hot Working Technology, 2005(3):8-10.
[24] 李晗嫣,陈文革,刘洁.热处理对Cu-Al复合界面显微组织结构与性能的影响[J].材料热处理学报, 2017, 38(7):63-70. LI H Y, CHEN W G, LIU J. Effect of heat treatment on microstructure and properties of Cu-Al composite interface[J]. Transactions of Materials and Heat Treatment, 2017, 38(7):63-70.
[25] 刘劲松,陈大勇,陈立鹏,等.退火处理对TP2铜管材组织与性能的影响[J].材料热处理学报, 2016, 37(3):107-113. LIU J S, CHEN D Y, CHEN L P, et al. Effect of annealing treatment on microstructure and mechanical properties of TP2 copper tubes[J]. Transactions of Materials and Heat Treatment, 2016, 37(3):107-113.
[26] 王莎,王快社,张兵,等.退火温度对Cu/Mo/Cu轧制复合板微观组织和力学性能的影响[J].稀有金属, 2010, 34(3):460-463. WANG S, WANG K S, ZHANG B, et al. Effect of annealing temperature on microstructure and mechanical properties of Cu-Mo-Cu laminates[J]. Chinese Journal of Rare Metals, 2010, 34(3):460-463.
[27] 徐荣吉,王瑞祥,丛伟,等.脉动热管启动过程的实验研究[J].西安交通大学学报, 2007, 41(5):530-533. XU R J, WANG R X, CONG W, et al. Experimental study on start-up process of pulsating heat pipe[J]. Journal of Xi'an Jiaotong University, 2007, 41(5):530-533.
[28] 郝婷婷.表面亲/疏水性能对脉动热管传递性能的影响[D].大连:大连理工大学, 2014. HAO T T. Effects of hydrophilic/hydrophobic surface on transport performance of an oscillating heat pipe[D]. Dalia:Dalian University of Technology, 2014.
[29] 章熙民,任泽霈,梅飞鸣.传热学[M]. 5版.北京:中国建筑工业出版社, 2007:199. ZHANG X M, REN Z R, MEI F M. Heat transfer theory[M]. 5th ed. Beijing:China Building Industry Press, 2007:199.
[30] 于春健. 结构表面对受限空间核沸腾机理及强化的影响[D]. 大连:大连理工大学, 2012, 12. YU C J. Influence of structured surface on nucleate boiling heat transfer mechanism and enhancement[D].Dalian:DalianUniversity of Technology, 2012.
[31] FAIRWEATHER J D, CHEUNG P, ST-PIERRE J, et al. Amicrofluidic approach for measuring capillary pressure in PEMFC gas diffusion layers[J]. Electrochem Commun, 2007, 9:2340-2345.
[32] MCHALE G, AQIL S, SHIRTCLIFFE N J, et al. Analysis of droplet vaporation on a super hydrophobic surface[J], Langmuir, 2005, 21:11053-11060.
[33] WARD L J,SCHOFIELD W,BADYAL J,et al. Atmospheric pressure plasma deposition of structurally well-defined polyacry licacid films[J]. ChemMater, 2003, 15:1466-1469.
[34] WONG T, KANG S H, TANG S K Y, et al. Bioin spired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature, 2011, 477:443-447.
[35] HAO T T, MA X H, LAN Z, et al. Effects of hydrophilic surface on heat transfer performance and oscillating motion for an oscillating heat pipe[J]. International Journal of Heat and Mass Transfer, 2014, 72:50-65. |