[1] 高坤山. 藻类固碳——理论、进展与方法[M]. 北京:科学出版社,2014:131. GAO K S. Algal carbon fixation-basis,advances and methods[M]. Beijing:Science Press,2014:131.
[2] 国家自然科学基金委员会工程与材料科学部. 工程热物理与能源利用学科发展战略研究报告(2011-2020)[M]. 北京:科学出版社,2014:310-312. Department of Engineering and Materials Science,National Natural Science Foundation of China. Strategic research report on discipline development of engineering thermophysics and energy utilization(2011-2020)[M]. Beijing:Science Press,2014:310-312.
[3] 中国科学院能源领域战略研究组. 中国至2050年能源科技发展路线图[M]. 北京:科学出版社,2009:70-71. Strategic Research Team on Energy Filed. Chinese academy of sciences. development roadmap of energy science and technology of China towards 2050[M]. Beijing:Science Press,2009:70-71.
[4] WILCOX J. Carbon capture[M]. NY,USA:Springer,2012:231.
[5] NAKAMURA T,OLAZIOLA M,MASUTANI S M. Recovery and sequestration of CO2 from stationary combustion systems by photosynthesis of microalgae[R]. Pittsburgh,PA:U.S. Department of Energy National Energy Technology Laboratory,2002.
[6] WIJFFELS R H,BARBOSA M J. An outlook on microalgal biofuels[J]. Science,2010,329:796-799.
[7] 黄建科,李元广. 能源微藻规模化培养及光生物反应器研究现状与发展策略[J]. 生物产业技术,2011(6):16-21. HUANG J K,LI Y G. Research progress and development strategy of energy algal scale-up cultivation and photobioreactor[J]. Biotechnology and Business,2011(6):16-21.
[8] 许大全. 光合作用学[M]. 北京:科学出版社,2013. XU D Q. The science of photosynthesis[M]. Beijing:Science Press,2013.
[9] 程丽华,张林,陈欢林,等. 微藻固定CO2研究进展[J]. 生物工程学报,2005,21(2):177-181. CHENG L H,ZHANG L,CHEN H L,et al. Research advances on CO2 fixation by microalgae[J]. Chinese Journal of Biotechnology,2005,21(2):177-181.
[10] SCHUSTER S,DANDEKA T,FELL D.Detection of elementary flux modes inbiochemical networks:a promising tool for pathway analysis and metabolic engineering[J]. Trends in Biotechnology,1999,17(2):53-60.
[11] 张弛,程丽华,陈荣辉. 小球藻产三酰甘油过程的代谢途径分析[J]. 现代化工,2014,34(9):55-58,60. ZHANG C,CHENG L H,CHEN R H. Metabolic pathway analysis on enhanced TAG production of Chlorella[J]. Modern Chemical Industry,2014,34(9):55-58,60.
[12] 程军,杨宗波,黄云,等. 核诱变驯化微藻固定燃煤烟气中的CO2[J]. 燃烧科学与技术,2016,22(3):193-197. CHENG J,YANG Z B,HUANG Y,et al. Mutation of Nannochloropsis Oculata for fixing CO2 from flue gas in a coal-fired power plant[J]. Journal of Combustion Science and Technology,2016,22(3):193-197.
[13] ZHU J Y,RONG J F,ZONG B N. Factors in mass cultivation of microalgae for biodiesel[J]. Chinese Journal of Catalysis,2013,34:80-100.
[14] MULLER-FEUGA A,GUÉDES R L,HERVÉ A,et al. Comparison of artificial light photobioreactors and other production systems using Porphyridium cruentum[J]. Journal of Applied Phycology,1998,10(1):83-90.
[15] 陈智杰,姜泽毅,张欣欣,等. 微藻培养光生物反应器内传递现象的研究进展[J]. 化工进展,2012,31(7):1407-1418. CHEN Z J,JIANG Z Y,ZHANG X X,et al. Research progress of transport phenomena within photobioreactor for microalgae culivation[J]. Chemical Industry and Engineering Progress,2012,31(7):1407-1418.
[16] 马春阳,赵军明,刘林华,等. 考虑细胞形态的小球藻光散射特性模拟[J]. 工程热物理学报,2015,36(11):2437-2440. MA Z Y,ZHAO J M,LIU L H,et al. Influence of cell morphology on scattering properties of microalgae[J]. Journal of Engineering Thermophysis,2015,36(11):2437-2440.
[17] 王帅. 梁英. Cd2+浓度、温度及交互作用对3株微藻生长及叶绿素荧光特性的影响[J]. 海洋湖沼通报,2012(2):44-58. WANG S,LIANG Y. The interaction effects of different Cd2+ concentrations and temperature on the growth and chlorophyll fluorescence of 3 microalgae strains[J]. Transactions of Oceanology and Limnology,2012(2):44-58.
[18] 赵婷,韩笑天,詹天荣,等. 温度对四种产油微藻生长和油脂特性的影响[J]. 海洋与湖沼,2016,7(6):1140-1148. ZHAO T,HAN X T,ZHAN T R,et al. Effect of temperature on growth and lipid properties of four oil-production microalga[J]. Oceanologia et Limnologia Sinica,2016,7(6):1140-1148.
[19] 王帅,郑立,韩笑天,等. 不同适温海洋富油微藻在富碳培养条件下的油脂积累特性研究[J]. 海洋学报,2014,36(12):41-51. WANG S,ZHENG L,HAN X T,et al. Effect on lipid accumulation of marine oil-rich microalga under different temperature and CO2 enrichment cultivation[J]. Acta Oceanologica Sinica,2014,36(12):41-51.
[20] VAN DEN HENDE S,VERVAEREN H,BOON N. Flue gas compounds and microalgae:(bio-)chemical interactions leading to biotechnological opportunities[J]. Biotechnology Advances,2012,30:1405-1424.
[21] SUALI E,SARBATLY R. Conversion of microalgae to biofuel[J]. Renewable and Sustainable Energy Reviews,2012,16:4316-4342.
[22] 赵莎,丁玉栋,廖强,等. 微藻悬浮液中CO2 气泡生长及脱离特性研究[J]. 工程热物理学报,2013,34(3):526-529. ZHAO S,DING Y D,LIAO Q,et al. Charactristics of CO2 bubble growth and departure in microalgae suspension[J]. Journal of Engineering Thermophysics,2013,34(3):526-529.
[23] 陈宁,吴晶. 进气布置对鼓泡式微藻光生物反应器混合性能影响的数值研究[J]. 工程热物理学报,2016,37(10):2185-2190. CHEN N,WU J. A numerical study of the effect of gas sparger geometry on the mixing characteristics in a bubble-column photobioreactor for microalgae cultivation[J]. Journal of Engineering Thermophysics,2016,37(10):2185-2190.
[24] 张雯雯,赵军,杨俊红,等. 相切套管曝气式光生物反应器设计和流场分析[J]. 太阳能学报,2014,35(11):2222-2229. ZHANG W W,ZHAO J,YANG J H,et al. Design and flow field analysis of a novel tangent tube-in-tube photobioreactor[J]. Acta Energiae Solaris Sinica,2014,35(11):2222-2229.
[25] HOUSE K Z,HARVEY C F,AZIZ M J,et al. The energy penalty of post-combustion CO2 capture & storage and its implications for retrofitting the U.S. installed base[J]. Energy Environment and Science,2009,2:193-205.
[26] 高林. 煤基化工-动力多联产系统开拓研究[D]. 北京:中国科学院工程热物理研究所,2005. GAO L. Investigation of coal-based polygeneration systems for production of power and liquid fuel[D]. Beijing:Institute of Engineering Thermophysics,Chinese Academy of Science,2005.
[27] 赵睿恺,邓帅,赵力,等. 太阳能辅助碳捕集:适用技术、性能比较和发展趋势[J]. 化工进展,2016,35(1):285-293. ZHAO R K,DENG S,ZHAO L,et al. Solar-assisted carbon capture:technology,performance comparison and development trend[J]. Chemical Industrial and Engineering Progress,2016,35(1):285-293.
[28] 巩金龙. CO2 化学转化研究进展概述[J]. 化工学报,2017,68(4):1282-1285. GONG J L. A brief overview on recent progress on chemical conversion of CO2[J]. CIESC Journal,2017,68(4):1282-1285.
[29] ZHAO R K,DENG S,LIU Y N,et al. Carbon pump:fundamental theory and applications[J]. Energy,2017,119:1131-1143.
[30] MATSUMOTO H,SHIOJI N,HAMASAKI A,et al. Carbon dioxide fixation by microalgae photosynthesis using actual flue gas discharged from a boiler[J]. Applied Biochemistry and Biotechnology,1995,51(1):681-692.
[31] MIRON A S,GOMEZ A C,CAMACHO F G,et al. Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae[J]. Journal of Biotechnology,1999,70(1):249-270.
[32] CHENG L,ZHANG L,CHEN H,et al. Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor[J]. Separation and Purification Technology,2006,50(3):324-329.
[33] CHIU S,KAO C,CHEN C,et al. Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor[J]. Bioresource Technology,2008,99(9):3389-3396.
[34] WANG B,LI Y,WU N,et al. CO2bio-mitigation using microalgae[J]. Applied Microbiology and Biotechnology,2008,79(5):707-718.
[35] ROSENBERG J N,OYLER G A,WILKINSON L,et al. A green light for engineered algae:redirecting metabolism to fuel a biotechnology revolution[J]. Current Opinion in Biotechnology,2008,19(5):430-436.
[36] MCCOY,KAMENOS N A. Coralline algae (Rhodophyta) in a changing world:integrating ecological,physiological,and geochemical responses to global change[J]. Journal of Phycology,2015,51(1):6-24.
[37] RYU H J,OH K K,KIM Y S. Optimization of the influential factors for the improvement of CO2 utilization efficiency and CO2 mass transfer rate[J]. Journal of Industrial and engineering Chemistry,2009,15(4):471-475.
[38] BILANOVIC D,ANDARGATCHEW A,KROEGER T,et al. Freshwater and marine microalgae sequestering of CO2 at different C and N concentrations-response surface methodology analysis[J]. Energy Conversion and Management,2009,50(2):262-267.
[39] DU Z,LI Y,WANG X,et al. Microwave-assisted pyrolysis of microalgae for biofuel production[J]. Bioresource Technology,2011,102(7):4890-4896.
[40] 周文广,阮榕生. 微藻生物固碳技术进展和发展趋势[J]. 中国科学(化学),2014,44(1):63-78. ZHOU W G,RUAN R S. Biological mitigation of carbon dioxide via microalgae:recent development and future direction[J]. Scientia Sinica,(Chimica),2014,44(1):63-78.
[41] JIANG Y, ZHANG W,WANG J,et al. Utilization of simulated flue gas for cultivation of Scenedesmus dimorphus[J]. Bioresource Technology,2013,128:356-364.
[42] 陈家城,赵云,沈英,等. 微藻固定CO2技术研究新进展[J]. 机电技术,2014(1):112-115,120. CHEN J C,ZHAO Y,SHEN Y,et al. Recent research progress on microalgae CO2 fixation technology[J]. Mechanical & Electrical Technology,2014(1):112-115,120.
[43] 陈琦,王卓,魏冬青. 代谢网络流分析进展及应用[J]. 科学通报,2010,55(14):1302-1309. CHEN Q,WANG Z,WEI D Q. Progress on the applications of flux analysis of metabolic networks[J]. Chinese Science Bulletin,2010,55(14):1302-1309.
[44] RICHARD S,STEPHANIE A H,MARJA K,et al. The biological carbon pump in the north Atlantic[J]. Progress in Oceanography,2014,129:200-218.
[45] KING C J. Separation processes[M]. 2nd. New York:Dover Publications,2013.
[46] LI X X,HUANG Z Y,LIU Z J,et al. In situ photocalorimetry:an alternative approach to studyphotocatalysis by tracing heat changes and kinetics[J]. Applied Catalysis B:Environmental,2016,181:79-87. |