化工进展 ›› 2018, Vol. 37 ›› Issue (01): 319-329.DOI: 10.16085/j.issn.1000-6613.2017-0740
户英杰, 王志强, 程星星, 刘命, 马春元
收稿日期:
2017-04-24
修回日期:
2017-06-13
出版日期:
2018-01-05
发布日期:
2018-01-05
通讯作者:
王志强,副教授,研究方向为燃烧及污染物控制。
作者简介:
户英杰(1994-),男,硕士,研究方向为大气污染物脱除。
基金资助:
HU Yingjie, WANG Zhiqiang, CHENG Xingxing, LIU Ming, MA Chunyuan
Received:
2017-04-24
Revised:
2017-06-13
Online:
2018-01-05
Published:
2018-01-05
摘要: 随着环境问题的日益严重,治理作为PM2.5前体的挥发性有机物(VOCs)越来越受到重视,燃烧法是目前常用的处理VOCs污染物技术之一。本文从燃烧的机理出发综述了燃烧法处理VOCs的研究进展,将燃烧法分为两大类,即非催化燃烧法和催化燃烧法。非催化燃烧法中从燃烧方式出发,总结了直接燃烧法、蓄热式热力燃烧法、多孔介质燃烧法的研究进展,并对燃烧影响因素进行了综述。在催化燃烧法中阐述了贵金属催化剂、非贵金属催化剂和复合金属氧化物催化剂的研究进展,探讨了催化剂的失活问题,分析了每种催化剂的优势与不足。贵金属催化剂活性高,但是价格昂贵、稳定性差;非贵金属催化剂价格低廉、寿命长,但是起燃温度高;复合金属氧化物催化剂活性高、抗毒性强,但是制备工艺复杂。最后基于目前的研究现状和不足,展望了未来燃烧法处理VOCs的研究方向为:结合实际应用的工艺条件和催化燃烧的机理,制备出活性高、价格低廉、抗毒性强和寿命长的催化剂用于蓄热式催化燃烧技术;将催化燃烧和多孔介质燃烧相结合,开发出高效、稳定、经济的燃烧技术处理VOCs污染物。
中图分类号:
户英杰, 王志强, 程星星, 刘命, 马春元. 燃烧处理挥发性有机污染物的研究进展[J]. 化工进展, 2018, 37(01): 319-329.
HU Yingjie, WANG Zhiqiang, CHENG Xingxing, LIU Ming, MA Chunyuan. Recent progress in the removal of volatile organic compounds by combustion[J]. Chemical Industry and Engineering Progress, 2018, 37(01): 319-329.
[1] 陈颖,李丽娜,郝郑平,等. 我国VOC类有毒空气污染物优先控制对策探讨[J]. 环境科学,2011,32(12):3469-3475. CHEN Y,LI L N,HAO Z P,et al. Countermeasures for priority control of toxic VOC pollution[J]. Environmental Science,2011,32(12):3469-3475. [2] Lewtas J,Pang Y,Booth D,et al. Comparison of sampling methods for semi-volatile organic carbon associated with PM2.5[J]. Aerosol Science and Technology,2001,34(1):9-22. [3] Hsu D J,Huang H L,Chien C H,et al. Potential exposure to VOCs caused by dry process photocopiers:results from a chamber study[J]. Bulletin of Environmental Contamination and Toxicology,2005,75(6):1150-1155. [4] Geng F,Tie X,Xu J,et al. Characterizations of ozone,NOx,and VOCs measured in Shanghai,China[J]. Atmospheric Environment,2008,42(29):6873-6883. [5] 王海林,张国宁,聂磊,等. 我国工业VOCs减排控制与管理对策研究[J]. 环境科学,2011,32(12):3462-3468. WANG H L,ZHANG G N,NEI L,et al. Study on control and management for industrial volatile organic compounds(VOCs)in China[J]. Environmental Science,2011,32(12):3462-3468. [6] 莫梓伟,邵敏,陆思华. 中国挥发性有机物(VOCs)排放源成分谱研究进展[J]. 环境科学学报,2014,34(9):2179-2189. MO Z H,SHAO M,LU S H. Review on volatile organic compounds (VOCs)source profiles measured in China[J]. Acta Scientiae Circumstantiae,2014,34(9):2179-2189. [7] 许伟,刘军利,孙康. 活性炭吸附法在挥发性有机物治理中的应用研究进展[J]. 化工进展,2016,35(4):1223-1229. XU W,LIU J L,SUN K. Application progresses in the treatment of volatile organic compounds by adsorption on activated carbon[J]. Chemical Industry and Engineering Progress,2016,35(4):1223-1229. [8] 王小军,徐校良,李兵,等. 生物法净化处理工业废气的研究进展[J]. 化工进展,2014,33(1):213-218. WANG X J,XU X L,LI B,et al. Research progress of biological methods for treating and purifying industrial waste gas[J]. Chemical Industry and Engineering Progress,2014,33(1):213-218. [9] 王宇飞,刘昌新,程杰,等. 工业VOCs经济手段和工程技术减排对比性分析[J]. 环境科学,2015,36(4):1507-1512. WANG Y F,LIU C X,CHENG J,et al. Comparison analysis of economic and engineering control of industrial VOCs[J]. Environmental Science,2015,36(4):1507-1512. [10] 栾志强,郝郑平,王喜芹. 工业固定源VOCs治理技术分析评估[J]. 环境科学,2011,32(12):3476-3486. LUAN Z Q,HAO Z P,WANG X Q. Evaluation of treatment technology of volatile organic compounds for fixed industrial resources[J]. Environmental Science,2011,32(12):3476-3486. [11] 李春生. 热力燃烧法处理电子元件厂VOCs研究[J]. 广州化工,2015,43(3):141-142. LI C S. Research of the thermal oxidation method dealing with electronic components factory VOCs[J]. Guangzhou Chemical Industry,2015,43(3):141-142. [12] Bennett G F. Current and potential future industrial practices for reducing and controlling volatile organic compounds[J]. Journal of Hazardous Materials,1994,38(2):345-346. [13] Khan F I,Ghoshal A K. Removal of volatile organic compounds from polluted air[J]. Journal of Loss Prevention in the Process Industries,2000,13(6):527-545. [14] Donley E,Lewandowski D. Optimized design and operating parameters for minimizing emissions during VOC thermal oxidation[J]. Metal Finishing,2000,98(6):446449-447458. [15] 张宇峰,邵春燕,张雪英,等. 挥发性有机化合物的污染控制技术[J]. 南京工业大学学报(自科版),2003,25(3):89-92. ZHANG Y F,SHAO C Y,ZHANG X Y,et al. Control technology of pollution caused by VOC[J]. Journal of Nanjing University of Technology,2003,25(3):89-92. [16] Ruddy E N,Carroll L A. Select the best VOC control strategy[J]. Chemical Engineering Progress,1993,89:7. [17] 贾海亮,赵军,李钰甫,等. 凹版印刷工业的绿色节能技术[J]. 包装学报,2015,7(2):53-58. JIA H L,ZHAO J F,LI Y F,et al. Green energy-saving technology in gravure press[J]. Packaging Journal,2015,72(2):53-58. [18] 李长英,陈明功,盛楠,等. 挥发性有机物处理技术的特点与发展[J]. 化工进展,2016,35(3):917-925. LI C Y,CHEN M G,SHENG N,et al. The characteristics and development of volatile organic compounds treatment technology[J]. Chemical Industry and Engineering Progress,2016,35(3):917-925. [19] 张建萍,项菲. 浅析蓄热式热力氧化技术处理挥发性有机废气[J]. 浙江化工,2014(3):36-39. ZHANG J P,XIANG F. The treatment of the volatile organic compound gas by the regenerative thermal oxidation technology[J]. Zhejiang Chemical Industry,2014(3):36-39. [20] 高娟,贾志刚,张照. 蓄热段长度对流向变换催化燃烧反应器性能影响的模型研究[J]. 工业催化,2014,22(9):719-724. GAO J,JIA Z G,ZHANG Z. Modeling a reversal flow reactor for catalytic combustion and the effects of regenerative length[J]. Industrial Catalysis,2014,22(9):719-724. [21] LITTO R,HAYES R E,SAPOUNDJIEV H,et al. Optimization of a flow reversal reactor for the catalytic combustion of lean methane mixtures[J]. Catalysis Today,2006,117(4):536-542. [22] MUJEEBU M A,ABDULLAH M Z,BAKAR M Z A,et al. Applications of porous media combustion technology-a review[J]. Applied Energy,2009,86(9):1365-1375. [23] 秦朝葵,郑璐. 多孔介质燃烧技术现状[J]. 城市燃气,2015(7):7-11. QIN C K,ZHENG L. Present status of porous medium combustion technology[J]. Chengshi Ranqi,2015(7):7-11. [24] GNESDILOV N N,DOBREGO K V,KOZLOV I M. Parametric study of recuperative VOC oxidation reactor with porous media[J]. International Journal of Heat & Mass Transfer,2007,50:2787-2794. [25] QU Z,GAO H,FENG X,et al. Premixed combustion in a porous burner with different fuels[J]. combustion Science & Technology,2014,187(3):489-504. [26] TRIMIS D,DURST F. Combustion in a porous medium-advances and applications[J]. Combustion Science and Technology,1996,121(1-6):153-168. [27] JUGJAI S,SOMJETLERTCHAROEN A. Multimode heat transfer in cyclic flow reversal combustion in a porous medium[J]. International Journal of Energy Research,2015,23:183-206. [28] 张俊春. 多孔介质燃烧处理低热值气体及燃烧不稳定性研究[D]. 杭州:浙江大学,2014. ZHANG J C. Porous media combustion for low calorific gases and combustion instabilites[D]. Hangzhou:Zhejiang University,2014. [29] 岑可法,程乐鸣,骆仲泱,等. 渐变型多孔介质燃烧器:01226080.0[P]. 2002-04-03. CEN K F,CHENG L M,LUO Z Y,et al. A gradually-varied porous media burner:01226080.0[P]. 2002-04-03. [30] 王恩宇,程乐鸣,吴学成,等. 渐变型多孔介质中预混燃烧试验研究[J]. 浙江大学学报(工学版),2002,36(6):685-689. WANG E Y,CHENG L M,WU X C,et al. Experimental research on premixed combustion in gradually-varied porous media[J]. Journal of Zhejiang University(Engineering Science),2002,36(6):685-689. [31] 李涛,程乐鸣,郑成航. 低热值燃气往复多孔介质燃烧特性[J]. 浙江大学学报(工学版),2011,45(1):151-156. LI T,CHENG L M,ZHENG C H. Combustion characteristics of low calorific gas in reciprocal flow porous media burner[J]. Journal of Zhejiang University(Engineering Science),2011,45(1):151-156. [32] SHI W,WANG D. (Engineering Science)Combined application of regenerative combustion technology and porous medium combustion technology[J]. Energy Procedia,2015,66:209-212. [33] DOBREGO K V,GNESDILOV N N,KOZLOV I M,et al. Numerical investigation of the new regenerator-recuperator scheme of VOC oxidizer[J]. International Journal of Heat & Mass Transfer,2005,48(23/24):4695-4703. [34] 张广宏,赵福真,季生福,等. 挥发性有机物催化燃烧消除的研究进展[J]. 化工进展,2007,26(5):624-631. ZHANG G H,ZHAO F Z,JI S F,et al. Development of the elimination of volatile organic compounds by catalytic combustion[J]. Chemical Industry and Engineering Progress,2007,26(5):624-631. [35] Rooke J C,Barakat T,Brunet J,et al. Hierarchically nanostructured porous group Vb,metal oxides from alkoxide precursors and their role in the catalytic remediation of VOCs[J]. Applied Catalysis B:Environmental,2015,162:300-309. [36] LI B,CHEN Y,LI L,et al. Reaction kinetics and mechanism of benzene combustion over the NiMnO3/CeO2/Cordierite catalyst[J]. Journal of Molecular Catalysis A:Chemical,2016,415:160-167. [37] KAMAL M S,RAZZAK S A,HOSSAIN M M. Catalytic oxidation of volatile organic compounds(VOCs) -a review[J]. Atmospheric Environment,2016,140:117-134. [38] Wang Y,Zhang C,Liu F,et al. Well-dispersed palladium supported on ordered mesoporous Co3O4,for catalytic oxidation of o-xylene[J]. Applied Catalysis B:Environmental,2013,s142/143(10):72-79. [39] 乔南利,李杨,李娜,等. 双介孔硅基材料负载Pd催化剂上甲苯氧化性能的研究[J]. 催化学报,2015,36(10):1686-1693. QIAO N L,LI Y,LI N,et al. High performance Pd catalysts supported on bimodal mesopore silica for the catalytic oxidation of toluene[J]. Chinese Journal of Catalysis,2015,36(10):1686-1693. [40] RUI Z b,Chen C y,LU Y Bet al. Anodic alumina supported Pt catalyst for total oxidation of trace toluene[J]. Chinese Journal of Chemical Engineering,2014,22(8):882-887. [41] Sedjame H J,Fontaine C,Lafaye G,et al. On the promoting effect of the addition of ceria to platinum based alumina catalysts for VOCs oxidation[J]. Applied Catalysis B:Environmental,2014,144(1):233-242. [42] Joung H J,Kim J H,Oh J S,et al. Catalytic oxidation of VOCs over CNT-supported platinum nanoparticles[J]. Applied Surface Science,2014,290(4):267-273. [43] Carabineiro S A C,Chen X,Martynyuk O,et al. Gold supported on metal oxides for volatile organic compounds total oxidation[J]. Catalysis Today,2015,244:103-114. [44] Hosseini M,Siffert S,Cousin R,et al. Total oxidation of VOCs on Pd and/or Au supported on TiO2/ZrO2 followed by"operando"[J]. Science Direct,2009,12:654-659. [45] 陈清波,罗来涛,王建鑫. 载体对Au-Pd催化剂甲醇部分氧化性能的影响[J]. 化工学报,2008,59(4):898-903. CHEN Q B,LUO L T,WANG J X. Effect of supports on activity of Au-Pd catalysts for partial oxidation of methanol[J]. Journal of Chemical Industry & Engineering(China),2008,59(4):898-903. [46] Barakat T,Rooke J C,Franco M,et al. Pd-and/or Au-loaded Nb-and V-doped macro-mesoporous TiO2,supports as catalysts for the total oxidation of VOCs[J]. European Journal of Inorganic Chemistry,2012(16):2812-2818. [47] 潘红艳,张煜,林倩,等. 催化燃烧VOCs用非贵金属催化剂研究新进展[J]. 化工进展,2011,30(8):1726-1732. PAN H Y,ZHANG Y,LIN Q,et al. Advance in non-noble metal catalysts for catalytic combustion of volatile organic compounds[J]. Chemical Industry and Engineering Progress,2011,30(8):1726-1725. [48] Maupin I,Mijoin J,BARBIER Jr J,et al. Improved oxygen storage capacity on CeO2/zeolite hybrid catalysts,application to VOCs catalytic combustion[J]. Catalysis Today,2011,176(1):103-109. [49] Heynderickx P M,Thybaut J W,Poelman H,et al. The total oxidation of propane over supported Cu and Ce oxides:a comparison of single and binary metal oxides[J]. Journal of Catalysis,2010,272(1):109-120. [50] De Rivas B. Synthesis,characterisation and catalytic performance of nanocrystalline Co3O4 for gas-phase chlorinated VOC abatement[J]. Journal of Catalysis,2011,281(1):88-97. [51] SANG C K,WANG G S. Catalytic combustion of VOCs over a series of manganese oxide catalysts[J]. Applied Catalysis B:Environmental,2010,98(3/4):180-185. [52] Sun H,Liu Z,Chen S,et al. The role of lattice oxygen on the activity and selectivity of the OMS-2 catalyst for the total oxidation of toluene[J]. Chemical Engineering Journal,2015,270:58-65. [53] SANG C K,PARK Y K,NAH J W. Property of a highly active bimetallic catalyst based on a supported manganese oxide for the complete oxidation of toluene[J]. Powder Technology,2014,266(6):292-298. [54] TIAN H,HE J,LIU L,et al. Highly active manganese oxide catalysts for low-temperature oxidation of formaldehyde[J]. Microporous & Mesoporous Materials,2012,151(11):397-402. [55] Tang W,WU X f,Liu G,et al. Preparation of hierarchical layer-stacking Mn-Ce composite oxide for catalytic total oxidation of VOCs[J]. Journal of Rare Earths,2015,33(1):62-69. [56] Zhou G,He X,Liu S,et al. Phenyl VOCs catalytic combustion on supported CoMn/AC oxide catalyst[J]. Journal of Industrial & Engineering Chemistry,2015,21(1):932-941. [57] Li S,Wang H,Li W,et al. Effect of Cu substitution on promoted benzene oxidation over porous CuCo-based catalysts derived from layered double hydroxide with resistance of water vapor[J]. Applied Catalysis B:Environmental,2015,166:260-269. [58] 薛雯娟,张新艳,李鹏,等. Au-Cu/Co3O4双金属催化剂上乙烯完全催化氧化性能[J]. 物理化学学报,2011,27(7):1730-1736. XUE W J,ZHANG X Y,LI P,et al. Catalytic activities for the complete oxidation of ethylene over Au-Cu/Co3O4 catalysts[J]. Acta Physico-Chimica Sinica,2011,27(7):1730-1736. [59] HE C,YU Y,LIN Y,et al. Low-temperature removal of toluene and propanal over highly active mesoporous CuCeOx,catalysts synthesized via,a simple self-precipitation protocol[J]. Applied Catalysis B:Environmental,2014,147:156-166. [60] 李兵,王志良,吴海锁,等. Ce-Ni-Mn-O复合氧化物催化剂催化燃烧苯的性能研究[J]. 功能材料,2013,44(10):1457-1460. LI B,WANG Z L,WU H S,et al. Catalytic performance of Ce-Ni-Mn-O mixed oxide for combustion of benzene[J]. Journal of Functional Materials,2013,44(10):1457-1460. [61] HE C,YU Y,CHEN C,et al. Facile preparation of 3D ordered mesoporous CuOx-CeO2 with notably enhanced efficiency for the low temperature oxidation of heteroatom-containing volatile organic compounds[J]. RSC Advances,2013,3(42):19639-19656. [62] 阚家伟,李兵,李林,等. 含氯挥发性有机化合物催化燃烧催化剂的研究进展[J]. 化工进展,2016,35(2):499-505. KAN J W,LI B,LI L,et al. Advances in catalysts for catalytic combustion of chlorinated volatile organic compounds[J]. Chemical Industry and Engineering Progress,2016,35(2):499-505. [63] Teh L P,Triwahyono S,Jalil A A,et al. Mesoporous ZSM-5 having both intrinsic acidic and basic sites for cracking and methanation[J]. Chemical Engineering Journal,2015,270:196-204. [64] 李兵,徐校良,牛茜,等. 负载型钙钛矿LaBxMn1-xO3/堇青石(B=Co,Fe,Ni,Cu)催化燃烧苯的性能[J]. 南京工业大学学报(自然科学版),2014,36(4):1-6. LI B,XU X L,NIU Q,et al. Properties of supported perovskite LaBxMn1-xO3/cordierite(B=Co,Fe,Ni,Cu)catalysts for benzene combustion[J]. Journal of Nanjing Tech University(Natural Science Edition),2014,36(4):1-6. [65] López-Fonseca R,Gutiérrez-Ortiz J I,Gutiérrez-Ortiz M A,et al. Catalytic oxidation of aliphatic chlorinated volatile organic compounds over Pt/H-BETA zeolite catalyst under dry and humid conditions[J]. Catalysis Today,2005,107/108(44):200-207. [66] Bertinchamps F,Attianese A,Mestdagh M M,et al. Catalysts for chlorinated VOCs abatement:multiple effects of water on the activity of VOx,based catalysts for the combustion of chlorobenzene[J]. Catalysis Today,2006,112(1):165-168. [67] Aranzabal A,Romero-Sáez M,Elizundia U,et al. Deactivation of H-zeolites during catalytic oxidation of trichloroethylene[J]. Journal of Catalysis,2012,296(7):165-174. [68] 沈柳倩,翁芳蕾,袁鹏军,等. 钙钛矿型催化剂对VOCs催化燃烧的抗毒性和稳定性研究[J]. 分子催化,2008,22(4):320-324. SHEN L Q,WENG F L,YUAN P J,et al. Research on the poison resistance and stabilization of the perovskite catalysts for VOCs catalytic combustion[J]. Journal of Molecular Catalysis,2008,22(4):320-324. [69] 黄海凤,宁星杰,蒋孝佳,等. V-M/TiO2(M=Cu、Cr、Ce、Mn、Mo)催化燃烧含氯有机废气[J]. 中国环境科学,2014,34(9):2179-2185. HUANG H F,NING X J,JIANG X J,et al. Catalytic combustion of chlorinated volatile organic compounds over V-M/TiO2(M=Cu、Cr、Ce、Mn、Mo)catalysts[J]. China Environmental Science,2014,34(9):2179-2185. [70] HE C,XU B T,SHI J W,et al. Catalytic destruction of chlorobenzene over mesoporous ACeOx,(A=Co,Cu,Fe,Mn,or Zr) composites prepared by inorganic metal precursor spontaneous precipitation[J]. Fuel Processing Technology,2015,130(1):179-187. [71] Zhang Z,Jiang Z,Shangguan W. Low-temperature catalysis for VOCs removal in technology and application:a state-of-the-art review[J]. Catalysis Today,2015,264:270-278. [72] 王海林,王俊慧,祝春蕾,等. 包装印刷行业挥发性有机物控制技术评估与筛选[J]. 环境科学,2014,35(7):2503-2507. WANG H L,WANG J H,ZHU C L,et al. Evaluation and selection of VOCs treatment technologies in packaging and printing industry[J]. Environmental Science,2014,35(7):2503-2507. [73] Chou M S,Cheng W H,Lee W S. Performance characteristics of a regenerative catalytic oxidizer for treating VOC-contaminated airstreams[J]. Journal of the Air & Waste Management Association,2000,50(12):2112-2119. [74] Huang S W,Lou J C,Lin Y C. Treatment of VOCs with molecular sieve catalysts in regenerative catalytic oxidizer[J]. Journal of Hazardous Materials,2010,183(1/2/3):641-647. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[6] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[7] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[8] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[9] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[10] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[11] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[12] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[13] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[14] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[15] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |