[1] Http://www.Chinatoday.Com.Cn/ctchinese/zhuanti/node_99061. Htm[J].
[2] SUMIDA K,ROGOW D L,MASON J A,et al.Carbon dioxide capture in metal-organic frameworks[J].Chem.Rev.,2012,112:724-81.
[3] MARTÍN C F,PLAZA M G,PIS J J,et al.On the limits of CO2 capture capacity of carbons[J].Separation and Purification Technology,2010,74:225-229.
[4] PLAZA M G,GARCIA S,RUBIERA F,et al.Post-comb-ustion CO2 capture with a commercial activated carbon:comparison of different regeneration strategies[J].Chemical Engineering Journal,2010,163:41-47.
[5] KIKKINIDES E S,YANG R T,CHO S H.Concentration and recovery of carbon dioxide from flue gas by pressure swing adsorption[J].Industrial & Engineering Chemistry Research,1993,32:2714-2720.
[6] CHUE K T,KIM J N,YOO Y J,et al.Comparison of activated carbon and zeolite 13X for CO2 recovery from flue gas by pressure swing adsorption[J].Industrial & Engineering Chemistry Research,1995,34:591-598.
[7] DO D D,WANG K.A new model for the description of adsorption kinetics in heterogeneous activated carbon[J].Carbon,1998,36:1539-1554.
[8] YE Q,JIANG J,WANG C,et al.Adsorption of low-concentration carbon dioxide on amine-modified carbon nanotubes at ambient temperature[J].Energy & Fuels,2012,26:2497-2504.
[9] HWANG C C,JIN Z,LU W,et al.In situ synthesis of polymer-modified mesoporous carbon cmk-3 composites for CO2 sequestration[J].Acs Applied Materials & Interfaces,2011,3:4782-4786.
[10] MEIS N N A H,FREY A M,BITTER J H,et al.Carbon nanofiber-supported K2CO3 as an efficient low-temperature regenerable CO2 sorbent for post-combustion capture[J].Industrial & Engineering Chemistry Research,2013,52:12812-12818.
[11] BEZERRA D P,OLIVEIRA R S,VIEIRA R S,et al.Adsorption of CO2 on nitrogen-enriched activated carbon and zeolite 13X[J].Adsorption-Journal of the International Adsorption Society,2011,17:235-246.
[12] SU F,LU C.CO2 capture from gas stream by zeolite 13X using a dual-column temperature/vacuum swing adsorption[J].Energy & Environmental Science,2012,5:9021-9027.
[13] GRAJCIAR L,CEJKA J,ZUKAL A,et al.Controlling the adsorption enthalpy of CO2 in zeolites by framework topology and composition[J].ChemSusChem,2012,5:2011-2022.
[14] WALTON K S,ABNEY M B,LEVAN Douglas M.CO2 adsorption in Y and X zeolites modified by alkali metal cation exchange[J].Microporous and Mesoporous Materials,2006,91:78-84.
[15] BERTSCH L,HABGOOD H W.An infrared spectroscopic study of the adsorption of water and carbon dioxide by linde molecular sieve X1[J].The Journal of Physical Chemistry,1963,67:1621-1628.
[16] REGE S U,YANG R T.A novel FTIR method for studying mixed gas adsorption at low concentrations:H2O and CO2 on nax zeolite and γ-alumina[J].Chemical Engineering Science,2001,56:3781-3796.
[17] WANG Q,LUO J,ZHONG Z,et al.CO2 capture by solid adsorbents and their applications:current status and new trends[J].Energy & Environmental Science,2011,4:42.
[18] LU H,KHAN A,PRATSINIS S E,et al.Flame-made durable doped-CaO nanosorbents for CO2 capture[J].Energy & Fuels,2008,23:1093-1100.
[19] LI L,KING D L,NIE Z,et al.Magnesia-stabilized calcium oxide absorbents with improved durability for high temperature CO2 capture[J].Industrial & Engineering Chemistry Research,2009,48:10604-10613.
[20] LYSIKOV A I,SALANOV A N,OKUNEV A G.Change of CO2 carrying capacity of CaO in isothermal recarbonation-decomposition cycles[J].Industrial & Engineering Chemistry Research,2007,46:4633-4638.
[21] BLAMEY J,ANTHONY E J,WANG J,et al.The calcium looping cycle for large-scale CO2 capture[J].Progress in Energy and Combustion Science,2010,36:260-279.
[22] MANOVIC V,ANTHONY E J.Steam reactivation of spent CaO-based sorbent for multiple CO2 capture cycles[J].Environmental Science & Technology,2007,41:1420-1425.
[23] MANOVIC V,ANTHONY E J.Thermal activation of CaO-based sorbent and self-reactivation during CO2 capture looping cycles[J].Environmental Science & Technology,2008,42:4170-4174.
[24] NAKAGAWA K,OHASHI T.A novel method of CO2 capture from high temperature gases[J].Journal of The Electrochemical Society,1998,145:1344-1346.
[25] NAIR B N,YAMAGUCHI T,KAWAMURA H,et al.Proc-essing of lithium zirconate for applications in carbon dioxide separation:structure and properties of the powders[J].Journal of the American Ceramic Society,2004,87:68-74.
[26] OCHOA-FERNÁNDEZ E,RØNNING M,GRANDE T,et al.Nanocrystalline lithium zirconate with improved kinetics for high-temperature CO2 capture[J].Chemistry of Materials,2006,18:1383-1385.
[27] PFEIFFER H,VÁZQUEZ C,LARA V H,et al.Thermal behavior and CO2 absorption of Li2-xNaxZrO3 solid solutions[J].Chemistry of Materials,2007,19:922-926.
[28] VELIZ-ENRIQUEZ M Y,GONZALEZ G,PFEIFFER H.Synth-esis and CO2 capture evaluation of Li2-xKxZrO3 solid solutions and crystal structure of a new lithium-potassium zirconate phase[J].Journal of Solid State Chemistry,2007,180:2485-2492.
[29] WILLIAMS G R,O'HARE D.Towards understanding,control and application of layered double hydroxide chemistry[J].Journal of Materials Chemistry,2006,16:3065-3074.
[30] RAM REDDY M K,XU Z P,LU G Q,et al.Layered double hydroxides for CO2 capture:structure evolution and regeneration[J].Industrial & Engineering Chemistry Research,2006,45:7504-7509.
[31] SHARMA U,TYAGI B,JASRA R V.Synthesis and chara-cterization of Mg-Al-CO3 layered double hydroxide for CO2 adsorption[J].Industrial & Engineering Chemistry Research,2008,47:9588-9595.
[32] RAM REDDY M K,XU Z P,DINIZ DA COSTA J C.Influence of water on high-temperature CO2 capture using layered double hydroxide derivatives[J].Industrial & Engineering Chemistry Research 2008,47:2630-2635.
[33] OLIVEIRA E L G,GRANDE C A,RODRIGUES A E. CO2 sorption on hydrotalcite and alkali-modified(K and Cs)hydrotalcites at high temperatures[J].Separation and Purification Technology,2008,62:137-147.
[34] WALSPURGER S,BOELS L,COBDEN P D,et al.The crucial role of the K+-aluminium oxide interaction in K+-promoted alumina-and hydrotalcite-based materials for CO2 sorption at high temperatures[J].ChemSusChem,2008,1:643-650.
[35] MEIS N N A H,BITTER J H,DE JONG K P.Support and size effects of activated hydrotalcites for precombustion CO2 capture[J].Industrial & Engineering Chemistry Research,2009,49:1229-1235.
[36] XU X,SONG C,ANDRESEN J M,et al.Novel polyethyleni-mine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture[J].Energy & Fuels,2002,16:1463-1469.
[37] FRANCHI R S,HARLICK P J E,SAYARI A.Applications of pore-expanded mesoporous silica.2.Development of a high-capacity,water-tolerant adsorbent for CO2[J].Industrial & Engineering Chemistry Research,2005,44:8007-8013.
[38] YUE M B,CHUN Y,CAO Y,et al.CO2 capture by as-prepared SBA-15 with an occluded organic template[J].Advanced Functional Materials,2006,16:1717-1722.
[39] YUE M B,SUN L B,CAO Y,et al.Promoting the CO2 adsorption in the amine-containing SBA-15 by hydroxyl group[J].Microporous and Mesoporous Materials,2008,114:74-81.
[40] HICKS J C,DRESE J H,FAUTH D J,et al.Designing adsorbents for CO2 capture from flue gas-hyperbranched aminosilicas capable of capturing CO2 reversibly[J].Journal of the American Chemical Society,2008,130:2902-2903.
[41] LIANG Z,FADHEL B,SCHNEIDER C J,et al.Stepwise growth of melamine-based dendrimers into mesopores and their CO2 adsorption properties[J].Microporous and Mesoporous Materials,2008,111:536-543.
[42] LIU FQ,WANG L,HUANG Z-G,et al.Amine-tethered adsorbents based on three-dimensional macroporous silica for CO2 capture from simulated flue gas and air[J].Acs Applied Materials & Interfaces,2014,6:4371-4381.
[43] ZHANG Z,MA X,WANG D,et al.Development of silica-gel-supported polyethylenimine sorbents for CO2 capture from flue gas[J].AIChE Journal,2012,58:2495-2502.
[44] CHOI S,DRESE J H,EISENBERGER P M,et al.Application of amine-tethered solid sorbents for direct CO2 capture from the ambient air[J].Environmental Science & Technology,2011,45:2420-2427.
[45] BUILES S,VEGA L F.Effect of immobilized amines on the sorption properties of solid materials:Impregnation versus grafting[J].Langmuir,2013,29:199-206.
[46] STOCK N,BISWAS S.Synthesis of metal-organic frameworks(MOFs):routes to various mof topologies,morphologies,and composites[J].Chem.Rev.,2012,112:933-969.
[47] MILLWARD A R,YAGHI O M.Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature[J].Journal of the American Chemical Society,2005,127:17998-17999.
[48] BOURRELLY S,LLEWELLYN P L,SERRE C,et al.Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates mil-53 and mil-47[J].Journal of the American Chemical Society,2005,127:13519-13521.
[49] THALLAPALLY P K,TIAN J,RADHA KISHAN M,et al.Flexible(breathing)interpenetrated metal-organic frameworks for CO2 separation applications[J].Journal of the American Chemical Society,2008,130:16842-16843.
[50] FARHA O K,YAZAYDIN A O,ERYAZICI I,et al.De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities[J].Nature Chemistry,2010,2:944-948.
[51] FURUKAWA H,KO N,GO Y B,et al.Ultrahigh porosity in metal-organic frameworks[J].Science,2010,329:424-428.
[52] NELSON A P,FARHA O K,MULFORT K L,et al.Super-critical processing as a route to high internal surface areas and permanent microporosity in metal-organic framework materials[J].Journal of the American Chemical Society,2008,131:458-460.
[53] LIU J,WANG Y,BENIN A I,et al.CO2/H2O adsorption equilibrium and rates on metal-organic frameworks:HKUST-1 and Ni/DOBDC[J].Langmuir,2010,26:14301-14307.
[54] APREA P,CAPUTO D,GARGIULO N,et al.Modeling carbon dioxide adsorption on microporous substrates:comparison between Cu-BTC metal-organic framework and 13X zeolitic molecular sieve[J].Journal of Chemical & Engineering Data,2010,55:3655-3661.
[55] CASKEY S R,WONG-FOY A G,MATZGER A J.Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores[J].Journal of the American Chemical Society,2008,130:10870-10871.
[56] LI J-R,TAO Y,YU Q,et al.Selective gas adsorption and unique structural topology of a highly stable guest-free zeolite-type mof material with N-rich chiral open channels[J].Chemistry-A European Journal,2008,14:2771-2776.
[57] LIU B,SMIT B.Comparative molecular simulation study of CO2/N2 and CH4/N2 separation in zeolites and metal-organic frameworks[J].Langmuir,2009,25:5918-5926.
[58] WU D,XU Q,LIU D,et al.Exceptional CO2 capture capa-bility and molecular-level segregation in a Li-modified metal-organic framework[J].The Journal of Physical Chemistry C,2010,114:16611-16617.
[59] YAZAYDLN A Ö,BENIN A I,FAHEEM S A,et al. Enhanced CO2 adsorption in metal-organic frameworks via occupation of open-metal sites by coordinated water molecules[J].Chemistry of Materials,2009,21:1425-1430.
[60] BORDIGA S,REGLI L,BONINO F,et al.Adsorption properties of HKUST-1 toward hydrogen and other small molecules monitored by Ir[J].Physical Chemistry Chemical Physics,2007,9:2676-2685.
[61] KRISHNA R,VAN BATEN J M.A comparison of the CO2 capture characteristics of zeolites and metal-organic frameworks[J].Separation and Purification Technology,2012,87:120-126.
[62] DEMESSENCE A,D'ALESSANDRO D M,FOO M L,et al.Strong CO2 binding in a water-stable,triazolate-bridged metal-organic framework functionalized with ethylenediamine[J].Journal of the American Chemical Society,2009,131:8784-8786.
[63] TORRISI A,BELL R G,MELLOT-DRAZNIEKS C.Functio-nalized mofs for enhanced CO2 capture[J].Crystal Growth & Design,2010,10:2839-2841.
[64] CMARIK G E,KIM M,COHEN S M,et al.Tuning the adsorption properties of UiO-66 via ligand functionalization[J].Langmuir,2012,28:15606-13.
[65] XIN CL,ZHAO N,ZHAN H,et al.Phase transition of silica in the TMB-P123-H2O-TEOS quadru-component system:a feasible route to different mesostructured materials[J].Journal of Colloid and Interface Science,2014,433:176-182.
[66] XIN C L,JIAO X,YIN Y,et al.Enhanced CO2 adsorption capacity and hydrothermal stability of HKUST-1 via introduction of siliceous mesocellular foams(MCFs)[J].Industrial & Engineering Chemistry Research,2016,55:7950-7957.
[67] XIN C L,ZHAN H,HUANG X,et al.Effect of various alkaline agents on the size and morphology of nano-sized HKUST-1 for CO2 adsorption[J].RSC Advances,2015,5:27901-27911. |