[1] 王国华,周旭峰,汪伟,等.石墨烯技术专利分析报告[R]. 中国科学院宁波材料科技与工程研究所,2015. WANG G H, ZHOU X F, WANG W,et al.Report on patenting activity of graphene technology[R]. CNITECH, 2015.
[2] 肖淑娟,于守武,谭小耀.石墨烯的制备方法及其性能研究[J].化学世界,2015,6:378-382. XIAO S J, YU S W, TAN X Y.A study of prepration and performance of graphene[J].Chemical World, 2015, 6:378-382.
[3] SARA G, AMIR H, MEHDI A.Adsorption of adenine on the surface of nickel-decorated graphene:a DFT study[J]. Journal of Alloys and Compounds, 2016, 686:662-668.
[4] 李嘉,石峰晖,吕晶,等.电弧法制备石墨烯材料的表征与评价[J].复合材料学报,2015,32(6):1658-1662. LI J, SHI F H, LV J, et al.Characterization and electric-arc-produced graphene material[J].Acta Materiae Composite Sinica, 2015, 32(6):1658-1662.
[5] ZHAO J P,PEI S F, GAO L B, et al.Efficient preparation of large-area graphene oxide sheets for transparent conductive films[J].American Chemical Society, 2010, 4(9):5245-5252.
[6] YU P, TIAN Z M, SONG J C, et al.Mechanically-assisted electrochemical production of graphene oxide[J].Chemistry of Materials, 2016, 28:8429-8438.
[7] 张学敏,张立国,钮应喜,等.外延生长碳化硅-石墨烯薄膜的制备及表征研究[J].功能材料,2015,46(4):4140-4143. ZHANG X M, ZHANG L G, NIU Y X, et al.Preparation and characterization of epitaxial growth silicon carbide-graphene thin films[J].Journal of functional Materials, 2015, 46(4):4140-4143.
[8] 陈皮伟,邹鹏,黄德欢.氧化还原法制备石墨烯工艺参数的研究[J].炭素技术,2014,33(6):20-23. CHEN P W, ZOU P, HUANG D H.The preparation parameter of graphene by oxidation-reduction method[J]. Carbon Techniques, 2014, 33(6):20-23.
[9] LONG D H, LI W, LING L C, et al.Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide[J].Langmuir, 2010, 26(20):16096-16102.
[10] SHEN J F, HU Y Z, SHI M,et al.Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets[J]. Chemistry of Materials, 2009, 21:3514-3520.
[11] 康乐, 张耀君, 杨梦阳,等.石墨烯纳米复合材料合成及其在光催化氧化降解和还原制备氢能中应用的研究进展[J].材料导报,2016,30(10):54-62. KANG L, ZHANG Y J, YANG M Y,et al.A review on synthesis of graphene nanocomposites and applications in photocatalytic degradation and hydrogen production[J]. Materials Review,2016, 30(10):54-62.
[12] NIU M, CHENG D J, CAO D P.Understanding the mechanism of photocatalysis enhancements in the graphene-like semiconductor sheet/TiO2composites[J].The Journal of Physical Chemistry C, 2014, 118:5954-5960.
[13] 刘芳, 樊丰涛, 吕玉翠,等.石墨烯/TiO2复合材料光催化降解有机污染物的研究进展[J].化工学报,2016,67(5):1635-1643. LIU F, FAN F T, LV Y C, et al.Research progress on photocatalytic degradation of organic pollutants by graphene/TiO2 composite materials[J].CIESC Journal, 2016, 67(5):1635-1643.
[14] 黄冬根, 莫壮洪,全水清.石墨烯/纳米TiO2复合材料的制备及光催化还原性能[J].复合材料学报,2016,33(1):155-162. HUANG D G, MO Z H, QUAN S Q.Preparation and photocatalytic reduction performance of graphene/nanoTiO2 composite[J].Acta Materiae Composite Sinica, 2016, 33(1):155-162.
[15] 言文远, 周琪, 陈星,等.两步水热法制备还原氧化石墨烯/纳米TiO2复合材料及其光催化性能[J].复合材料学报,2016,33(1):123-131. YAN W Y, ZHOU Q, CHEN X, et al.Preparation of reduced graphene oxide nanoTiO2composites by two-step hydrothermal method and their photocatalytic properties[J]. Acta Materiae Composite Sinica, 2016, 33(1):123-131.
[16] 张宏忠, 秦小青, 王明花.石墨烯/TiO2复合物的制备及其光催化性能[J].环境工程学报,2016,10(1):169-174. ZHANG H Z, QIN X Q, WANG M H.Preparation and photocatalytic performance of RGO/TiO2 nano-composite material[J].Chinese Journal of Environmental Engineering,2016, 10(1):169-174.
[17] QIU B C, XING M Y, ZHANG J L.Mesoporous TiO2 nanocrystals grown in situ on grapheme aerogels for high photocatalysis and lithium-ion batteries[J].Journal of the American Chemical Society,2014, 136:5852-5855.
[18] 苗慧,夏娟,金凤,等.AgNbO3/石墨烯复合材料的合成及其可见光催化甲基橙降解活性[J].发光学报,2016,37(2):165-173. MIAO H, XIA J, JIN F, et al.Synthesis of AgNbO3/graphene nanocomposites with highly visible light photocatalytic activity for removal of methyl orange[J]. Chinese Journal of Luminescence, 2016, 37(2):165-173.
[19] CHUN H H, LEE J Y, LEE J H, et al.Enhanced photocatalysis of graphene and TiO2 dual-coupled carbon nanofibers post-treated at various temperatures[J]. Industrial and Engineering Chemistry Research, 2016, 55:45-53.
[20] 尹竞,廖高祖,朱冬韵,等.g-C3N4/石墨烯复合材料的制备及光催化活性的研究[J].中国环境科学,2016,36(3):735-740. YIN J, LIAO G Z, ZHU D Y, et al.Preparation and photocatalytic activity of g-C3N4/rGO composite[J].China Environmental Science, 2016, 36(3):735-740.
[21] LIU W J, CAI J Y, LI Z H.Self-assembly of semiconductor nanoparticles/reduced graphene oxide composite aerogels for enhanced photocatalytic performance and facile recycling in aqueous photocatalysis[J].ACS Sustainable Chemistry & Engineering, 2015, 3:277-282.
[22] WANG T, LI C J, JI J Y, et al.Reduced graphene oxide (rGO)/BiVO4 composites with maximized interfacial coupling for visible light photocatalysis[J].ACS Sustainable Chemistry & Engineering, 2014, 2(10):2253-2258.
[23] BERA R, KUNDU S, PATRA A.2D hybrid nanostructure of reduced graphene oxide-CdS nanosheet for enhanced photocatalysis[J].ACS Applied Materials & Interfaces, 2015, 7(24):13251-13259.
[24] 宗凯,汪浩,刘晶冰,等.石墨烯在光催化反应中应用的研究进展[J].化工进展,2012,31(12):2736-2742. ZONG K, WANG H, LIU J B, et al.Research progress in photocatalytic reactions based on graphene[J].Chemical Industry and Engineering Progress, 2012,31(12):2736-2742.
[25] 高海丽,何里烈,张勇,等.Pt/石墨烯催化剂的合成及甲醇电氧化性能[J].电源技术,2016,140(9):1771-1774. GAO H L, HE L L, ZHANG Y, et al.Synthesis and methanol oxidation performance of graphene supported Pt catalyst[J].Chinese Journal of Power Sources, 2016, 140(9):1771-1774.
[26] 张子俊,李慧,张媛媛,等.基于纳米钯/石墨烯增敏效应对双酚A的电化学检测[J].武汉工程大学学报,2017,39(1):5-11. ZHANG Z J, LI H, ZHANG Y Y, et al.Electrochemical detection of bisphenol A based on enhancement effect of palladium nanoparticle/graphene[J].Journal of Wuhan Institute of Technology, 2017, 39(1):5-11.
[27] YANG L M, TANG Y H, YAN D F, et al.Polyaniline-reduced graphene oxide hybrid nanosheets with nearly vertical orientation anchoring palladium nanoparticles for highlyactive and stable electrocatalysis[J].ACS Applied Materials & Interfaces, 2016, 8:169-176.
[28] 张文慧,王素敏,王奇观,等.镍掺杂多孔石墨烯的制备、表征及对过氧化氢的电化学检测[J].精细化工中间体,2016,46(5):33-37. ZHANG W H, WANG S M, WANG Q G, et al.Preparation and characterization of nickel doped porous graphene and electrochemical detection toward H2O2[J].Fine Chemical Intermediates, 2016, 46(5):33-37.
[29] ZHAO B T, ZHENG Y, YE F, et al.Multifunctional iron oxide nanoflake/graphene composites derived from mechanochemical synthesis for enhanced lithium storage and electrocatalysis[J].ACS Applied Materials & Interfaces, 2015, 7:14446-14455.
[30] WANG Y, SHAO Y Y, MATSON D W, et al.Nitrogen-doped graphene and its application in electrochemical biosensing[J].American Chemical Society, 2010, 4(4):1790-1798.
[31] CHEN L, XIAO J J, LIU B H, et al.A bonded double-doped graphene nanoribbon framework for advanced electrocatalysis[J].ACS Applied Materials & Interfaces, 2016, 8:16649-16655.
[32] THOMAS M, ILLATHVALAPPIL R, KURUNGOT S, et al. Graphene oxide sheathed ZIF 8 microcrystals:engineered precursors of nitrogen-doped porous carbon for efficient oxygen reduction reaction (ORR) electrocatalysis[J].ACS Applied Materials & Interfaces, 2016, 8:29373-29382.
[33] GONG Y J, FEI H L, ZOU X L, et al.Boron-and nitrogen-substituted graphene nanoribbons as efficient catalysts for oxygen reduction reaction[J].American Chemical Society, 2015, 27(4):1181-1186.
[34] SAIDI W A.Oxygen reduction electrocatalysis using N-doped graphene quantum-dots[J].The Journal of Physical Chemistry Letters, 2013, 4:4160-4165.
[35] AMBROSI A.Graphene and its electrochemistry-an update[J].Chemical Society Reviews, 2016, 45(9):2458-2493.
[36] JIA Y, ZHANG L Z, DU A J, et al.Defect graphene as a trifunctional catalyst for electrochemical reaction[J]. Advanced Materials, 2016, 28(43):9532-9538.
[37] YAN X C, JIA Y, CHEN J, et al.Defective-activated-carbon-supported Mn-Co nanoparticles as a highly efficient electrocatalyst for oxygen reduction[J].Advanced Materials, 2016, 28:8771-8778.
[38] XU X Y, LI J, XU H Y, et al.DFT investigation of Ni-doped graphene:catalytic ability to CO oxidation[J].New Journal of Chemistry, 2016, 40:9361-9369.
[39] XU J, LI Y, CAO J Y, et al.Preparation of graphene-supported highly dispersed nickel nanoparticles for the improved generation of hydrogen from ball-milled LiBH4[J]. Catalysis Science &Technology, 2015, 5:1821-1828.
[40] DAHAL A, BATZILL M.Graphene-nickel interfaces:a review[J].Nanoscale, 2014, 6:2548-2562.
[41] 史鹏,侯朝霞,王少洪,等.多孔石墨烯及其复合材料的研究进展[J].兵器材料科学与工程,2017,40(1):119-124. SHI P, HOU Z X, WANG S H, et al.Research progress in porous graphene and its composites[J].Ordnance Material Science and Engineering, 2017, 40(1):119-124.
[42] 徐琪,周泽宇,王洪涛.石墨烯-TiO2光催化剂复合板制备及其对五氯酚的催化降解[J].环境科学,2016,37(8):3079-3085. XU Q, ZHOU Z Y, WANG H T.Generation of graphene-titanium dioxide nanotubes catalytic board and its photocatalysis capability to degrade pentachlorophenol[J]. Environmental Science, 2016, 37(8):3079-3085.
[43] 李兴涛,闫海生,王磊,等.石墨烯负载钯纳米颗粒催化5-羟甲基糠醛选择氧化制2,5-呋喃二甲酸[J].材料导报,2016,30(8):26-30. LI X T, YAN H S, WANG L, et al.graphene supported Pd nanoparticles for selective oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid[J]. Materials Review, 2016, 30(8):26-30.
[44] SALIMIAN M, IVANOV M, DEEPAK F L, et al.Synthesis and characterization of reduced graphene oxide/spiky nickel nanocomposite for nanoelectronic applications[J].Journal of Materials Chemistry C, 2015, 3:11516-11523.
[45] ZHAN M M, LI Y, PAN D H, et al.Nickel core-palladium shell nanoparticles grown on nitrogen-doped graphene with enhanced electrocatalytic performance for ethanol oxidation[J].Royal Society of Chemistry, 2016, 6:33231-33239. |