[1] 李亚军. 浅谈碳四综合利用[J]. 兰州科技,1994,12(2):134-137. LI Y J. Discussion of comprehensive utilization of C4[J]. Lanzhou Technology,1994,12(2):134-137.
[2] 王定博. 炼厂碳四资源的利用途径[J]. 化工进展,2014,33(6):1429-1434. WANG D B. Utilization ways of refinery C4[J]. Chemical Industry and Engineering Progress,2014,33(6):1429-1434.
[3] 卢小松. 炼厂碳四气体资源的综合利用[J]. 化工管理,2013(12):212-213. LU X S. Comprehensive utilization of refinery C4 gas[J]. Chemical Enterprise Management,2013(12):212-213.
[4] 薛建成,房德仁,刘丽花,等. 异丁烯下游产品生产工艺研究进展[J]. 工业催化,2013,21(4):16-21. XUE J C,FANG D R,LIU L H,et al. Research advance in production processes of isobutylene downstream products[J]. Industrial Catalysis,2013,21(4):16-21.
[5] 刘莹. 异丁烷脱氢制异丁烯技术的现状和发展趋势[J]. 石油化工,2016,45(5):630-635. LIU Y. Technological development in dehydrogenation of isobutane to isobutene[J]. Petrochemical Technology,2016,45(5):630-635.
[6] 李玉芳,崔小明. 异丁烯的生产及其下游产品开发(一)[J]. 化工中间体,2003,16:9-14. LI Y F,CUI X M. Production processes and downstream products of isobutylene (I)[J]. Chemical Intermediates,2003,16:9-14.
[7] ANDERSON R F,STURTEVANT G C,朱武明. UOP的OLEFLEX工艺:生产烯烃的新方法[J]. 金山油化纤,1989(1):73-77. ANDERSON R F,STURTEVANT G C,ZHU W M. The OLEFLEX process by UOP:new production method for aklenes[J]. Petrochemical Technology in Jinsan,1989(1):73-77.
[8] 马要耀. 国内外高纯异丁烯市场及其下游产品分析[J]. 中国石油和化工经济分析,2015,4:58-61. MA Y Y. Market and downstream products of high purity isobutene both in China and abroad[J]. Economical Analysis of Chinese Petroleum and Chemical,2015,4:58-61.
[9] 张鹏. MTBE对环境的影响及发展趋势[J]. 节能环保,2014,4(16):2014J2495. ZHANG P. Environmental impact and developmental trend of MTBE[J]. Construction,2014,4(16):2014J2495.
[10] 杨为民. 碳四烃转化与利用技术研究进展及发展前景[J]. 化工进展,2015,34(1):1-9. YANG W M. Progress and perspectives on conversion and utilization of C4 hydrocarbons[J]. Chemical Industry and Engineering Progress, 2015,34(1):1-9.
[11] 刘波. 异丁烷脱氢铬系催化剂研究[D]. 烟台:烟台大学,2013:12. LIU B. Research of Cr catalysts for isobutane dehydrogenation[D]. Yantai:Yantai University,2013:12.
[12] SIAHVASHI A,CHESTERFILED D,ADESINA A A. Nonoxidative and oxidative propane dehydrogenation over bimetallic Mo-Ni/Al2O3 catalyst[J]. Industrial & Engineering Chemistry Research,2013,52(11):4017-4026.
[13] LI Y,ZHANG Z,WANG J,et al. Direct dehydrogenation of isobutane to isobutene over carbon catalysts[J]. Chinese Journal of Catalysis,2015,36(8):1214-1222.
[14] VORA B V. Development of dehydrogenation catalysts and processes[J]. Topic in Catalysis,2012,55(19/20):1297-1308.
[15] 宋艳敏,孙守亮,孙振乾. 异丁烷催化脱氢制异丁烯技术研究[J]. 精细与专用化学品,2006,14(17):10-12. SONG Y M,SUN S L,SUN Z Q. Research on preparing technology of isobutylene with isobutane dehydrogenation[J]. Fine and Specialty Chemicals,2006,14(17):10-12.
[16] 吴丽琼,李亚玲,李吉春,等. 丁烷催化脱氢催化剂及技术研究进展[J]. 石化科技与应用,2014,32(2):177-181. WU L Q,LI Y L,LI J C,et al. Progress on catalysts and technology of butane dehydrogenation[J]. Petrochemical Technology & Application,2014,32(2):177-181.
[17] 肖锦堂,王开岳. 国外低碳烷烃脱氢工艺比较[J]. 石油与天然气化工,1994,23(4):218-224. XIAO J T,WANG K Y. Comparison on process for light alkanes dehydrogenation in abroad[J]. Chemical Engineering of Oil and Gas, 1994,23(4):218-224.
[18] RUSSELL A S, STOKES J J. Role of surface area in dehydrocyclization catalysis[J]. Industrial & Engineering Chemistry Research,1946,38(10):1071-1074.
[19] AOUISSI A,ALDHAYAN D,ALKAHTANI S. Conversion of isobutane in presence of carbon dioxide over molybdenum oxide catalysts obtained from heteropolymolybdate precursors[J]. Chinese Journal of Catalysis,2012,33(9):1474-1479.
[20] ZHANG L,DENG J,DAI H,et al. Binary Cr-Mo oxide catalysts supported on MgO-coated polyhedral three-dimensional mesoporous SBA-16 for the oxidative dehydrogenation of iso-butane[J]. Applied Catalysis A:General,2009,354(1/2):72-81.
[21] ZHANG Y J,RODRíGUEZ-RAMOS I,GUERRERO-RUIZ A. Oxidative dehydrogenation of isobutane over magnesium molybdate catalysts[J]. Catalysis Today,2000,61(1/4):377-382.
[22] BLASCO T,NIETO J M L. Oxidative dehydrogenation of short chain alkanes on supported vanadium oxide catalysts[J]. Applied Catalysis A:General,1997,157(1/2):117-142.
[23] WACHS I E,WECKHUYSEN B M. Structure and reactivity of surface vanadium oxide species on oxide supports[J]. Applied Catalysis A:General,1997,157(1/2):67-90.
[24] CHAAR M A,PATEL D,KUNG M C,et al. Selective oxidative dehydrogenation of butane over VMgO catalysts[J]. Journal of Catalysis,1987,105(2):483-498.
[25] QIAO K,PENG P,YAN Z,et al. Synthesis of vanadium-based catalysts and their excellent catalytic behaviors on dehydrogenation of C4 hydrocarbons[J]. Applied Petrochemical Research,2015,5(4):321-327.
[26] OVSITER O,KONDRATENKO E V. Selective and stable iso-butene production over highly dispersed VOx species on SiO2 supports via combining oxidative and non-oxidative iso-butane dehydrogenation[J]. Chemical Communication,2010,46(57):4974-4976.
[27] RUBIO O, HERGUIDO J, MEN?NDEZ M. Oxidative dehydrogenation of n-butane on V/MgO catalysts-kinetic study in anaerobic conditions[J]. Chemical Engineering Science,2003,58(20):4619-4627.
[28] SOHN J R,CHO S G,PAE Y I. Characterization of vanadium oxide-zirconia catalyst[J]. Journal of Catalysis,1996,159(1):170-177.
[29] LIU Y,CAO Y,YI N,et al. Vanadium oxide supported on mesoporous SBA-15 as highly selective catalysts in the oxidative dehydrogenation of propane[J]. Journal of Catalysis,2004,224(2):417-428.
[30] SOLSONA B,BLASCO T,NIETO J M L,et al. Vanadium oxide supported on mesoporous MCM-41 as selective catalysts in the oxidative dehydrogenation of alkanes[J]. Journal of Catalysis,2001, 203(2):443-452.
[31] SUN G,HUANG Q,HUANG S,et al. Vanadium oxide supported on msu-1 as a highly active catalyst for dehydrogenation of isobutane with CO2[J]. Catalysis,2016,6(3). DOI:10.3390/catal6030041.
[32] WU Z,SCHWARTZ V,RONDINONE A J,et al. Support shape effect in metal oxide catalysis:ceria-nanoshape-supported vanadia catalysts for oxidative dehydrogenation of isobutane[J]. The Journal of Physical Chemistry Letters,2012,3(11):1517-1522.
[33] KRAEMER S,RONDINONE A J,TSAI Y T,et al. Oxidative dehydrogenation of isobutane over vanadia catalysts supported by titania nanoshapes[J]. Catalysis Today,2016,263:84-90.
[34] CHEN M,XU J,GAO Y,et al. Dehydrogenation of propane over In2O3-Al2O3 mixed oxide in the presence of carbon dioxide[J]. Journal of Catalysis,2010,272(1):101-108.
[35] CHEN M,WU J L,LIN Y M,et al. Study in support effect of In2O3/MOx (M=Al,Si,Zr) catalysts for dehydrogenation of propane in the presence of CO2[J]. Applied Catalysis A:General,2011,407(1/2):20-28.
[36] XU J,SAEYS M. Improving the coking resistance of Ni-based catalysts by promotion with subsurface boron[J]. Journal of Catalysis,2006,242(1):217-226.
[37] XU Y,WANG K,WANG X,et al. Catalytic dehydrogenation of isobutane in the presence of hydrogen over Cs-modified Ni2P supported on active carbon[J]. Applied Surface Science,2014,316:163-170.
[38] 丁建飞,秦张峰,李学宽,等. NiO/Al2O3催化剂上二氧化碳气氛下异丁烷耦合脱氢制异丁烯[J]. 燃料化学学报,2010,38(4):458-461. DING J F,QIN Z F,LI X K,et al. Coupling dehydrogenation of isobutane to isobutene in the presence of carbon dioxide over NiO/Al2O3 catalyst[J]. Journal of Fuel Chemical and Technology, 2010,38(4):458-461.
[39] XU J,TAN K F,SAEYS M. Effect of boron on the stability of Ni catalysts during steam methane reforming[J]. Journal of Catalysis, 2009,261(2):158-165.
[40] TAKITA Y, SANO K, KUROSAKI K, et al. Oxidative dehydrogenation of iso-butane to iso-butene I. Metal phosphate catalysts[J]. Applied Catalysis A:General,1998,167(1):49-56.
[41] 许燕丽,王希涛. 磷化镍催化异丁烷临氢脱氢制异丁烯[J]. 化学工业与工程,2016,33(2):17-22. XUN Y L,WANG X T. Dehydrogenation of isobutane to isobutene over nickel phosphide catalyst in the presence of hydrogenation[J]. Chemical Industry and Engineering,2016,33(2):17-22.
[42] HERACLEOUS E,LEMONIDOU A A. Ni-Nb-O mixed oxides as highly active and selective catalysts for ethene production via ethane oxidative dehydrogenation. Part I:Characterization and catalytic performance[J]. Journal of Catalysis,2006,237(1):162-174.
[43] HERACLEOUS E,LEMONIDOU A A. Ni-Nb-O mixed oxides as highly active and selective catalysts for ethene production via ethane oxidative dehydrogenation. PartⅡ:Mechanistic aspects and kinetic modeling[J]. Journal of Catalysis,2006,237(1):175-189.
[44] NIKOLLA E,HOLEWINSKI A,LINIC S,et al. Controlling carbon surface chemistry by alloying-carbon tolerant reforming catalyst[J]. Journal of the American Chemical Society,2006,128(35):11354-11355.
[45] NIKOLLA E,SCHWANK J,LINIC S. Promotion of the long-term stability of reforming Ni catalysts by surface alloying[J]. Journal of Catalysis,2007,250(1):85-93.
[46] BENGAARD H S,NRSKOV J K,SEHESTED J,et al. Steam reforming and graphite formation on Ni catalysts[J]. Journal of Catalysis,2002,209(2):365-384.
[47] IWASAWA Y,NOBE H,OGASAWARA S. Reaction mechanism for styrene synthesis over polynaphthoquinone[J]. Journal of Catalysis, 1973,31(3):444-449.
[48] QI W, SU D. Metal-free carbon catalysts for oxidative dehydrogenation reactions[J]. ACS Catalysis,2014,4(9):3212-3218.
[49] VELÁSQUEZ J D,SU?REZ L M C,FIGUEIREDO J L. Oxidative dehydrogenation of isobutane over activated carbon catalysts[J]. Applied Catalysis A:General,2006,311:51-57.
[50] VELÁSQUEZ J D,SU?REZ L M C,FIGUEIREDO J L. Oxidative dehydrogenation of isobutane over activated carbon catalysts[J]. Applied Catalysis A:General,2006,311:51-57.
[51] YANG X,WANG A,QIAO B,et al. Single-atom catalysts:a new frontier in heterogeneous catalysis[J]. Accounts of Chemical Research,2013,46(8):1740-1748.
[52] LIU P,ZHAO Y,ZHENG N,et al. Photochemical route for synthesizing atomically dispersed palladium catalysts[J]. Science, 2016,352(6287):797-800.
[53] CAO X,JI Y,LUO Y. Dehydrogenation of propane to propylene by a Pd/Cu single-atom catalyst:insight from first-principles calculations[J]. The Journal of Physical Chemistry C,2014,119(2):1016-1023.
[54] HU B,GETSOIAN A B,DAS U, et al. Selective propane dehydrogenation with single-site CoII on SiO2 by a non-redox mechanism[J]. Journal of Catalysis,2015,322:24-37.
[55] BISCARDI J A,MEITZNER G D,LGLASIA E. Structure and density of active Zn species in Zn/H-ZSM5 propane aromatization catalysts[J]. Journal of Catalysis,1998,179(1):192-202.
[56] VAJDA S,MARSHALL C L,CURTISS L A,et al. Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane[J]. Nature Materials,2009,8:213-216.
[57] SCHWEITZER N M,HU B,DAS U,et al. Propylene hydrogenation and propane dehydrogenation by a single-site Zn2+ on silica catalyst[J]. ACS Catalysis,2014,4(4):1091-1098. |