[1] Weingarten R,Cao F,Luterbacher J S,et al. Selective conversion of cellulose to hydroxymethylfurfural in polar aprotic solvents[J]. ChemCatChem,2014,6(8):2229-2234.[2] Ramli N A S,Amin N A S. Catalytic hydrolysis of cellulose and oil palm biomass in ionic liquid to reducing sugar for levulinic acid production[J]. Fuel Processing Technology,2014,128:490-498.[3] Tao F R,Song H L,Chou L J. Catalytic conversion of cellulose to chemicals in ionic liquid[J]. Carbohydrates Research,2011,346(1):58-63.[4] Ding D Q,Wang J J,Xi J X,et al. High-yield production of levulinic acid from cellulose and its upgrading to gamma-valerolactone[J]. Green Chemistry,2014,16(8):3846-3853.[5] 白净,张璐,方书起,等. 糖基生物质生产食品化工产品研究进展[J]. 化工进展,2015,34(1):212-218.[6] Gardebje S,Larsson A,Lofgren C,et al. Controlling water permeability of composite films of polylactide acid,cellulose,and xyloglucan[J]. Journal of Applied Polymer Science,2015,132(1):41219-41226.[7] Tao F R,Song H L,Yang J,et al. Catalytic hydrolysis of cellulose into furans in MnCl2-ionic liquid system[J]. Carbohydrate Polymers,2011,85(2):363-368.[8] Tao F R,Song H L,Chou L J. Hydrolysis of cellulose in SO3H-functionalized ionic liquids[J]. Bioresource Technology,2011,102:9000-9006.[9] Taherzadeh M J,Karimi K. Acid-based hydrolysis processes for ethanol from lignocellulosic materials:A review[J]. Bioresources,2007,2(3):472-499.[10] Yan Y J,Jiang G H. Recent advances in catalytic conversion of cellulose into variable chemicals and bio-fuels[J]. Journal of Biobased Materials and Bioenergy,2014,8(6):553-569.[11] Kim S B,Lee Y Y. Diffusion of sulfuric acid within lignocellulosic biomass particles and its impact on dilute-acid pretreatment[J]. Bioresource Technology,2002,83(2):165-171.[12] Zhang H Y,Cheng Y T,Vispute T P,et al. Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5:The hydrogen to carbon effective ratio[J]. Energy & Environmenatl Science,2009,4(6):2297-2307.[13] Robert R,Ferdi S. Design of solid catalysts for the conversion of biomass[J]. Energy & Environmental Science,2009,2:610-626.[14] Wang A Q,Zhang T. One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalyst[J]. Accounts of Chemical Research,2013,46(7):1377-1386.[15] Liu Y,Luo C,Liu H C. Tungsten trioxide selective conversion of cellulose into propylene glycol and ethylene glycol on a ruthenium catalyst[J]. Angewandte Chemie:International Edition,2012,51(13):3249-3253.[16] Ji N,Zhang T,Zheng M Y,et al. Catalytic conversion of cellulose into ethylene glycol over supported carbide catalysts[J]. Catalysis Today,2009,147(2):77-85.[17] Ding L N,Wang A Q,Zheng M Y,et al. Selective transformation of cellulose into sorbitol by using a bifunctional nichkel phosphide catalyst[J]. ChemSusChem,2010,3(7):818-821.[18] Zhang J J,Lu F,Yu W Q,Chen J Z,et al. Selective hydrogenative cleavage of C-C bonds in sorbitol using Ni-Re/C catalyst under nitrogen atmosphere[J]. Catalysis Today,2014,234:107-112.[19] Vilcocq L,Cabiac A,Especel C,et al. New insights into the mechanism of sorbitol transformation over an original bifunctional catalytic system[J]. Journal of Catalysis,320:16-25.[20] Kobayashi H,Ito Y,Komanoya T,et al. Synthesis of sugar alcohols by hydrolytic hydrogenation of cellulose over supported metal catalysts[J]. Green Chemistry,2011,13(2):326-333.[21] Kobayashi H,Yamakoshi Y,Fukuoka A,et al. Production of sugar alcohols from real biomass by supported platinum catalyst[J]. Catalysis Today,2014,226:204-209.[22] Gorp K V,Boerman E,Cavenaghi C V,et al. Catalytic hydrogenation of fine chemicals:Sorbitol production[J]. Catalysis Today,1999,52(2):349-361.[23] Luo C,Wang S,Liu H C. Cellulose conversion into polyols catalyzed by reversibly formed acids and supported ruthenium clusters in hot water[J]. Angewandte Chemie:International Edition,2007,46(40):7636-7639.[24] Deng W P,Liu M,Tan X S,et al. Conversion of cellobiose into sorbitol in neutral water medium over carbon nanotube-supported ruthenium catalysts[J]. Journal of Catalysis,2010,271(1):22-32.[25] Deng W P,Wang Y L,Zhang Q H,et al. Development of bifunctional catalysts for the conversions of cellulose or cellobiose into polyols and organic acids in water[J]. Catalysis Surveys from Asia,2012,16(2):91-105.[26] Zhu W W,Yang H M,Chen J Z,et al. Efficient hydrogenolysis of cellulose into sorbitol catalyzed by a bifunctional catalyst[J]. Green Chemistry,2014,16(30):1534-1542.[27] Han J W,Lee H. Direct conversion of cellulose into sorbitol using dual-functionalized catalysts in neutral aqueous solution[J]. Catalysis Communications,2012,19:115-118.[28] Onda A,Ochi K,Yanaqisawa K. Selective hydrolysis of cellulose into glucose over solid acid catalysts[J]. Green Chemistry,2008,10:1033-1037.[29] Kobayashi H,Komanoya T,Fukuoka A,et al. Conversion of cellulose into renewable chemicals by supported metal catalysis[J]. Applied Catalysis A:General,2011,409-410:13-20.[30] Liu M,Deng W P,Zhang Q H,et al. Polyoxometalate-supported ruthenium nanoparticles as bifunctional heterogeneous catalysts for the conversions of cellobiose and cellulose into sorbitol under mild conditions[J]. Chemical Commnication,2011,47(34):9717-9719.[31] Deng W P,Zhang Q H,Wang Y. Polyoxometalates as efficient catalysts for transformations of cellulose into platform chemicals[J]. Dalton Transactions,2012,41(33):9817-9831.[32] Palkovits R,Tajvidi K,Ruppertc A M,et al. Heteropoly acids as efficient acid catalysts in the one-step conversion of cellulose to sugar alcohols[J]. Chemical Communication,2011,47(1):576-578.[33] Van de Vyver S,Thomas J,Geboers J,et al. Catalytic production of levulinic acid from cellulose and other biomass-derived carbohydrates with sulfonated hyperbranched poly(arylene oxindole)s[J]. Energy & Environmental Science,2011,4(9):3601-3610.[34] Shimizu K I,Furukawa H,Kobayashi N,et al. Effects of Bronsted and Lewis acidities on activity and selectivity of heteropolyacid-based catalysts for hydrolysis of cellobiose and cellulose[J]. Green Chemisrty,2009,11:1627-1632.[35] Deng W P,Liu M,Wang Y,et al. Acid-catalysed direct transformation of cellulose into methyl glucosides in methanol at moderate temperatures[J]. Chemical Communication,2010,46(15):2668-2670.[36] Deng W P,Zhu E Z,Wang Y,et al. Cs-substituted tungstophosphate-supported ruthenium nanoparticles as efficient and robust bifunctional catalysts for the conversion of inulin and cellulose into hexitols in water in the presence of H2[J]. RSC Advances,2014,81(4):43131-43141.[37] Chen J Z,Wang S P,Huang J,et al. Conversion of cellulose and cellobiose into sorbitol catalyzed by ruthenium supported on a polyoxometalate/metal-organic framework hybrid[J]. ChemSusChem,2013,6(8):1545-1555.[38] Geboers J,Van de Vyver S,Carpentier K,et al. Efficient catalytic conversion of concentrated cellulose feeds to hexitols with heteropoly acids and Ru on carbon[J]. Chemical Communication,2010,46(20):3577-3579.[39] Fukuoka A,Dhepe P L. Catalytic conversion of cellulose into sugar alcohols[J]. Angewandte Chemie:International Edition,2006,45(31):5161-5163.[40] Liang G F,Cheng H Y,Zhao F Y,et al. Selective conversion of microcrystalline cellulose into hexitols on nickel particles encapsulated within ZSM-5 zeolite[J]. Green Chemistry,2012,14:2146-2149.[41] Van de Vyver S,Geboers J,Dusselier M,et al. Selective bifunctional catalytic conversion of cellulose over reshaped Ni particles at the tip of carbon nanofiber[J]. ChemSusChem,2010,3(6):698-701.[42] Wang X C,Meng L Q,Wu F,et al. Efficient conversion of microcrystalline cellulose to 1,2-alkanediols over supported Ni catalysts[J]. Green Chemistry,2012,14(3):758-765.[43] Sun J Y,Liu H C. Selective hydrogenolysis of biomass-derived xylitol to ethylene glycol and propylene glycol on Ni/C and basic oxide-promoted Ni/C catalysts[J]. Catalysis Today,2014,234:75-82.[44] Ding L N,Wang A Q,Zheng M Y,et al. Selective transformation of cellulose in to sorbitol by using a bifunctional nickel phosphide catalyst[J]. ChemSusChem,2010,3(7):818-821.[45] Negoi A,Triantafyllidis K,Parvulescu V I,et al. The hydrolytic hydrogenation of cellulose to sorbitol over M (Ru,Ir,Pd,Rh)-BEA-zeolite catalysts[J]. Catalysis Today,2014,223:122-128.[46] Deng W P,Tan X S,Wang Y,et al. Conversion of cellulose into sorbitol over carbon nanotube-supported ruthenium catalyst[J]. Catalsis Letters,2009,133(1-2):167-174.[47] Wang H J,Zhu L L,Yang J,et al. High efficient conversion of cellulose to polyols with Ru/CNTs as catalyst[J]. Renewable Energy,2012,37(1):192-196.[48] Yan N,Zhao C,Luo C,et al. One-step conversion of cellobiose to C6-alcohols using a ruthenium nanocluster catalyst[J]. Journal of the American Chemical Society,2006,128(27):8714-8715.[49] Sun R Y,Wang T T,Zhang T,et al. Versatile nickel-lanthanum (Ⅲ) catalyst for direct conversion of cellulose to glycols[J]. ACS Catalysis,2015,5(2):874-883.[50] Zhang Y H,Wang A Q,Zhang T. A new 3D mesoporous carbon replicated from commercial silica as a catalyst support for direct conversion of cellulose into ethylene glycol[J]. Chemical Communication,2010,46(6):862-864.[51] Geboers J,Van de Vyver S,Carpentier K,et al. Efficient hydrolytic hydrogenation of cellulose in the presence of Ru-loaded zeolites and trace amounts of mineral acid[J]. Catalysis Communication,2011,47(19):5590-5592.[52] Ji N,Zhang T,Zheng M Y,et al. Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts[J]. Angewandte Chemie:International Edition,2008,47:8510-8513.[53] Zheng M Y,Wang A Q,Ji N,et al. Transition metal-tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol[J]. ChemSusChem,2010,3(1):63-66.[54] Li C Z,Zheng M Y,Wang A Q,et al. One-pot catalytic hydrocracking of raw woody biomass into chemicals over supported carbide catalysts:Simultaneous conversion of cellulose,hemicellulose and lignin[J]. Energy & Environmental Science,2012,5(4):6383-6390.[55] Zhao G H,Zheng M Y,Wang A Q,et al. Catalytic conversion of cellulose to ethylene glycol over tungsten phosphide catalysts[J]. Chinese Journal of Catalysis,2010,31(8):928-932.[56] Zheng M Y,Pang J F,Wang A Q,et al. One-pot catalytic conversion of cellulose to ethylene glycol and other chemicals:From fundamental discovery to potential commercialization[J]. Chinese Journal of Catalysis,2014,35(5):602-613.[57] Cao Y L,Wang J W,Kang M Q,et al. Efficient synthesis of ethylene glycol from cellulose over Ni-WO3/SBA-15 catalysts[J]. Journal of Molecular Catalysis A:Chemical,2014,381:46-53.[58] Baek I G,You S J,Park E D. Direct conversion of cellulose into polyols over Ni/W/SiO2-Al2O3[J]. Bioresource Technology,2012,114:684-690.[59] Zhao J Y,Hou B L,Wang A Q,et al. Kinetic study of Retro-Aldol condensation of glucose glycolaldehyde with ammonium metatungstate as the catalyst[J]. American Institute of Chemical Engineers,2014,60(11):3804-3813.[60] Kourieh R,Bennici S,Marzo M,et al. Investigation of the WO3/ZrO2 surface acidic properties for the aqueous hydrolysis of cellobiose[J]. Catalysis Communications,2012,19:119-126.[61] Levy R B,Boudart M. Platinum-like behavior of tungsten carbide in surface catalysis[J]. Science,1973,181:547-549.[62] Zhang J Y,Hou B L,Wang A Q,et al. Kinetic study of the competitive hydrogenation of glycolaldehyde and glucose on Ru/C with or without AMT[J]. American Institute of Chemical Engineers,2015,61:224-238.[63] Ji N,Zheng M Y,Wang A Q,et al. Nickel-promoted tungsten carbide catalysts for cellulose conversion:Effect of preparation methods[J]. ChemSusChem,2012,5(5):939-944.[64] Zhou L K,Pang J F,Wang A Q,et al. Catalytic converion of jerusalem artichoke stalk to ethylene glycol over a combined catalyst of WO3 and Raney Ni[J]. Chinese Journal of Catalysis,2013,34(11):2041-2046. |