[1] LEE Jang-Soo,KIM Sun Tai,CAO Ruiguo,et al. Metal–air batteries with high energy density:Li–air versus Zn–air [J]. Adv. Energy Mater.,2011,1:34–50. [2] NEBURCHILOV Vladimir,WANG Haijiang,MARTIN Jonathan J,et al. A review on air cathodes for zinc-air fuel cells,[J]. Journal of Power Sources,2010,195:1271–1291. [3] MA Hongyun,WANG Baoguo,FAN Yongsheng,et al. Development and characterization of an electrically rechargeable zinc-air battery stack [J]. Energies,2014,7:6549-6557. [4] RAHMAN M Arafat,WANG Xiaojian,WEN Cuie. High energy density metal-air batteries:a review [J]. J. Electrochemical Society,2013,160(10):A1759-A1771. [5] BECK Fritz,RUETSCHI Paul. Rechargeable batteries with aqueous electrolytes [J]. Electrochimica Acta,2000,45:2467–2482. [6] GOH F W T,LIU Z,GE X,et al. Ag nanoparticle-modified MnO2 nanorods catalyst for use as an air electrode in zinc–air battery[J]. Electrochimica Acta,2013,114:598-604. [7] 马洪运. 气液固三相电催化反应及空气电极的研究[D]. 北京:清华大学,2015. [8] NEBURCHILOV V,WANG H,MARTIN J J,et al. A review on air cathodes for zinc–air fuel cells [J]. Journal of Power Sources,2010,195(5):1271-1291. [9] LI Y,DAI H J. Recent advances in zinc–air batteries [J]. Chemical Society Reviews,2014,43(15):5257-5275. [10] CHENG F,CHEN J. Metal-air batteries:from oxygen reduction electrochemistry to cathode catalysts [J]. Chemical Society Reviews,2012,41:2172-2192. [11] ESPOSITO D V,CHEN J G. Monolayer platinum supported on tungsten carbides as low-cost electrocatalysts:opportunities and limitations [J]. Energy & Environmental Science,2011,4:3900-3912. [12] WHTTINGHAM M S. Lithium batteries and cathode materials [J]. Chemical Reviews,2004,104:4271-4302. [13] NORSKOV J K,ROSSMEISL J,LOGADOTTIR A,et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode[J]. Journal of Physical Chemistry B,2004,108:17886-17892. [14] MENG H,SHEN P K. Novel Pt-free catalyst for oxygen electroreduction[J]. Electrochemistry Communications,2006,8:588-594. [15] WAGNER N,SCHULZE M,GULZOW E. Long term investigations of silver cathodes for alkaline fuel cells [J]. Journal of Power Sources,2004,127:264-272. [16] CHATENET M,GENIES-BULTEL L,AUROUSSEAU M,et al. Oxygen reduction on silver catalysts in solutions containing various concentrations of sodium hydroxide-comparison with platinum[J]. Journal of Applied Electrochemistry,2002,32:1131-1140. [17] NIE Yao,LI Li,WEI Zidong. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction[J]. Chem. Soc. Rev.,2015,44:2168-2201. [18] PARK G S,LEE J S,KIM S T,et al. Porous nitrogen doped carbon fiber with churros morphology derived from electrospun bicomponent polymer as highly efficient electrocatalyst for Zn–air batteries[J]. Journal of Power Sources,2013,243:267-273. [19] AI K,LIU Y,RUAN C,et al. Sp2 C-dominant N-doped carbon sub-micrometer spheres with a tunable size:a versatile platform for highly efficient oxygen-reduction catalysts [J]. Advanced Materials,2013,25:998-1003. [20] LIU Z,ZHANG G,LU Z,et al. One-step scalable preparation of N-doped nanoporous carbon as a high-performance electrocatalyst for the oxygen reduction reaction [J]. Nano Res.,2013,6:293-301. [21] ZHU S,CHEN Z,LI B,et al. Nitrogen-doped carbon nanotubes as air cathode catalysts in zinc-air battery[J]. Electrochimica Acta,2011,56:5080-5084. [22] TIAN G L,ZHAO M Q,YU D,et al. Nitrogen-doped graphene/carbon nanotube hybrids:in situ formation on bifunctional catalysts and their superior electrocatalytic activity for oxygen evolution/reduction reaction[J]. Small,2014,10:2251-2259. [23] DEBART A,PATERSON A J,BAO J,et al. Alpha-MnO2 nanowires:a catalyst for the O2 electrode in rechargeable lithium batteries [J]. Angewandte Chemie-International Edition,2008,47:4521-4524. [24] DU G,LIU X,ZONG Y,et al. Co3O4 nanoparticle-modified MnO2 nanotube bifunctional oxygen cathode catalysts for rechargeable zinc-air batteries [J]. Nanoscale,2013,5:4657-61. [25] PRABU M,KETPANG K,SHANMUGAM S. Hierarchical nanostructured NiCo2O4 as an efficient bifunctional non-precious metal catalyst for rechargeable zinc-air batteries [J]. Nanoscale,2014,6:3173-3181. [26] JUNG K N,JUNG J H,IM W B,et al. Doped lanthanum nickelates with a layered perovskite structure as bifunctional cathode catalysts for rechargeable metal-air batteries [J]. ACS Applied Materials & Interfaces,2013,5:9902-9907. [27] CHEN Z,YU A,AHMED R,et al. Manganese dioxide nanotube and nitrogen-doped carbon nanotube based composite bifunctional catalyst for rechargeable zinc-air battery [J]. Electrochimica Acta,2012,69:295-300. [28] LEE D U,KIM B J,CHEN Z. One-pot synthesis of a mesoporous NiCo2O4 nanoplatelet and graphene hybrid and its oxygen reduction and evolution activities as an efficient bi-functional electrocatalyst [J]. Journal of Materials Chemistry A,2013,1:4754-4762. [29] LIANG Y,LI Y,WANG H,et al. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction[J]. Nature Materials,2011,10:780-786. [30] MALKHANDI S,YANG B,MANOHAR A K,et al. Electrocatalytic properties of nanocrystalline calcium-doped lanthanum cobalt oxide for bifunctional oxygen electrodes [J]. Journal of Physical Chemistry Letters,2012,3:967-972. [31] JIN C,CAO X,ZHANG L,et al. Preparation and electrochemical properties of urchin-like La0.8Sr0.2MnO3 perovskite oxide as a bifunctional catalyst for oxygen reduction and oxygen evolution reaction[J]. Journal of Power Sources,2013,241:225-230. [32] WANG J,WU H,GAO D,et al. High-density iron nanoparticles encapsulated within nitrogen-doped carbon nanoshell as efficient oxygen electrocatalyst for zinc-air battery[J]. Nano Energy,2015,13:387-396. [33] NIKOLOVA V,ILIEV P,PETROV K,et al. Electrocatalysts for bifunctional oxygen/air electrodes [J]. Journal of Power Sources,2008,185:727-733. [34] JORISSEN L. Bifunctional oxygen/air electrodes [J]. Journal of Power Sources,2006,155:23-32. [35] LI Y,GONG M,LIANG Y,et al. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts[J]. Nature Communications,2013,4:7. [36] BOCKRIS J,NAGY Z,DAMJANOVIC A. On the deposition and dissolution of zinc in alkaline solutions [J]. Journal of the Electrochemical Society,1972,119(3):285-295. [37] ARMSTRONG R D,BELL M F. The electrochemical behaviour of zinc in alkaline solution [J]. Electrochemistry,1974,4:1-17. [38] KANNAN A R S,MURALIDHARAN S,SARANGAPANI K B,et al. Corrosion and anodic behaviour of zinc and its ternary alloys in alkaline battery electrolytes[J]. Journal of Power Sources,1995,57(1):93-98. [39] 费锡明,彭历,黄正喜,等. 无汞碱锰电池锌负极的研究(Ⅱ)[J]. 华中师范大学学报(自然科学版),2001,35(1):57-60. [40] 洪淑娜,林海斌,苏卓健,等. 碱性溶液中锌电极缓蚀的研究[J]. 电化学,2011(2):144-148. [41] LEE S M,KIM Y J,EOM S W,et al. Improvement in self-discharge of Zn anode by applying surface modification for Zn–air batteries with high energy density [J]. Journal of Power Sources,2013,227:177-184. [42] DIGGLE J W,DESPIC A R,BOCKRIS J O M. The mechanism of the dendritic electrocrystallization of zinc [J]. Journal of The Electrochemical Society,1969,116(11):1503-1514. [43] DESPIC A R,DIGGLE J,BOCKRIS J O M. Mechanism of the formation of zinc dendrites [J]. Journal of The Electrochemical Society,1968,115(5):507-508. [44] 王建明,张莉,张春,等. Bi~(3+)和四丁基溴化铵对碱性可充锌电极枝晶生长行为的影响[J]. 功能材料,2001(1):45-47. [45] BANIK S J,AKOLKAR R. Suppressing dendrite growth during zinc electrodeposition by PEG-200 additive [J]. Journal of the Electrochemical Society,2013,160(11):D519- D523. [46] GE X M,SUMBOJA A,WUU D,et al. Oxygen reduction in alkaline media:from mechanisms to recent advances of catalysts [J]. ACS Catalysis,2015,5(8):4643-4667. [47] XU M,IVEY D G,XIE Z,et al. Rechargeable Zn-air batteries:progress in electrolyte development and cell configuration advancement [J]. Journal of Power Sources,2015,283: 358-371. [48] MA Hongyun,WANG Baoguo. A bifunctional electrocatalyst a-MnO2-LaNiO3/carbon nanotube composite for rechargeable zinc–air batteries [J]. RSC Adv.,2014,4:46084-46092. [49] 清华大学. 空气电极的制备方法、空气电极和包括空气电极的电池:103682376A [P]. 2014-03-26. [50] 清华大学.一种水平式三电极电化学可充的锌空气电池:105098292A [P]. 2015-11-25. |