[1] YOUNG T.The Bakerian lecture:experiments and calculations relative to physical optics[J].Philosophical Transactions of the Royal Society of London,1804,94:1-16. [2] ERRINGTON J R,DEBENEDETTI P G.Relationship between structural order and the anomalies of liquid water[J].Nature, 2001,409(6818):318-321. [3] SCHMID G M,HURD R M,SNAVELY JR E S. Effects of electrostatic fields on the surface tension of salt solutions[J].Journal of the Electrochemical Society,1962,109(9):852-858. [4] DAMM E P.Discussion of "Effects of electrostatic fields on the surface tension of salt solutions"[SCHMID G M,HURD R M, SNAVELY JR E S.1962,109(9):852-858] [J].Journal of The Electrochemical Society,1963,110(6):590-591. [5] HAYES C F. Water-air interface in the presence of an applied electric field[J]. The Journal of Physical Chemistry,1975,79(16):1689-1693. [6] JIANG Q,CHIEW Y C,VALENTINE J E.Electric field effects on the surface tension of air/solution interfaces[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,1994,83(2):161-166. [7] SOHL C H,MIYANO K,KETTERSON J B.Novel technique for dynamic surface tension and viscosity measurements at liquid-gas interfaces[J].Review of Scientific Instruments,1978,49(10):1464-1469. [8] LIGGIERI L,SANFELD A,STEINCHEN A.Effects of magnetic and electric fields on surface tension of liquids[J].Physica A:Statistical Mechanics and its Applications,1994,206(3):299-331. [9] WATANABE A,MATSUMOTO M,TAMAI H,et al.Electrocapillary phenomena at oil-water interfaces[J].Colloid & Polymer Science,1967,220(2):152-159. [10] MORIMOTO Y,SAHEKI K.Electrification of a vacuum oil drop in an electric field[J].Japanese Journal of Applied Physics,1979, 18(7):1239-1242. [11] SATO M,KUDO N,SAITO M.Surface tension reduction of liquid by applied electric field using vibrating jet method[J].IEEE Transactions on Industry Applications,1998,34(2):294-300. [12] SATO M,KITO M,SAKAI T. Surface tension reduction under high potential by vibrating jet method[J]. Kagaku Kogaku Ronbunshu,1977,3(5):504-507. [13] BATENI A,LAUGHTON S,TAVANA H,et al.Effect of electric fields on contact angle and surface tension of drops[J].Journal of Colloid and Interface Science,2005,283(1):215-222. [14] BATENI A,ABABNEH A,ELLIOTT J A W,et al. Effect of gravity and electric field on shape and surface tension of drops[J].Advances in Space Research,2005,36(1):64-69. [15] SANFELD A,WILSON S K.Influence of capillarity on chemical stability and of electric field on surface tension near the critical point[J]. Philosophical Transactions of the Royal Society of London,1998,356(1739):819-828. [16] PRINS M W J,WELTERS W J J,WEEKAMP J W. Fluid control in multichannel structures by electrocapillary pressure[J].Science,2001,291(5502):277-280. [17] KANG K H.How electrostatic fields change contact angle in electrowetting[J].Langmuir,2002,18(26):10318-10322. [18] MUGELE F, BARET J C. Electrowetting:from basics to applications[J].Journal of Physics:Condensed Matter,2005, 17(28):R705. [19] POLLACK M G, SHENDEROV A D, FAIR R B. Electrowetting-based actuation of droplets for integrated microfluidics[J].Lab on A Chip,2002,2(2):96-101. [20] CHO S K,MOON H, KIM C J.Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits[J]. Journal of Microelectromechanical Systems,2003,12(1):70-80. [21] ZENG J,KORSMEYER T.Principles of droplet electrohydro-dynamics for lab-on-a-chip[J].Lab on A Chip,2004,4(4):265-277. [22] 孙凯歌,康明,欧阳帆,等.带有悬浮锥形圆环的液体变焦透镜[J].光学精密工程,2009,17(6):1397. [23] 康明,岳瑞峰,吴建刚,等.基于EWOD的锥形管状结构液体变焦透镜[J].传感技术学报,2006,19(5):1768-1770. [24] 欧阳帆,吴建刚,孙凯歌,等.基于介质上电润湿的透射式显示器件[J].纳米技术与精密工程,2008,6(1):34-37. [25] 唐文跃,胡国辉.生物芯片中周期性电渗透驱动液体薄膜的流动特性[J].力学学报,2012,44(3):600-606. [26] 白锋,洪芳军.介质上电润湿液滴输运,合并及振荡实验研究[J].微纳电子技术,2012(8):526-533. [27] NANAYAKKARA Y S,MOON H,PAYAGALA T,et al.A fundamental study on electrowetting by traditional and multifunctional ionic liquids:possible use in electrowetting on dielectric-based microfluidic applications[J]. Analytical Chemistry, 2008,80(20):7690-7698. [28] POLLACK M G, FAIR R B, SHENDEROV A D. Electrowetting-based actuation of liquid droplets for microfluidic applications[J]. Applied Physics Letters, 2000, 77(11):1725-1726. [29] SONG J H,EVANS R,LIN Y Y,et al.A scaling model for electrowetting-on-dielectric microfluidic actuators[J].Microfluidics & Nanofluidics,2008,7(1):75-89. [30] 曾雪锋,董良,吴建刚,等.介质上电润湿现象的研究[J].仪器仪表学报,2004,25(4):263-264. [31] 曾雪锋,岳瑞锋,吴建刚,等.Actuation and control of droplets by using electrowetting-on-dielectric[J].中国物理快报:英文版, 2004,21(9):1851-1854. [32] 岳瑞峰,吴建刚,曾雪锋,等.基于介质上电润湿的液滴产生器的研究[J].电子器件,2007,30(1):41-45. [33] RAJABI N,DOLATABADI A.A novel electrode shape for electrowetting-based microfluidics[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2010, 365(1):230-236. [34] WALKER S W,SHAPIRO B.Modeling the fluid dynamics of electrowetting on dielectric (EWOD)[J]. Journal of Microelectromechanical Systems,2006,15(4):986-1000. [35] 洪芳军,郑平.介质上电润湿液滴动力学特性的数值模拟研究[J].工程热物理学报,2010,31(7):1205-1208 [36] YU T M,YANG S M,FU C Y,et al.Integration of organic opto-electrowetting and poly(ethylene) glycol diacrylate (PEGDA) microfluidics for droplets manipulation[J].Sensors & Actuators B Chemical,2013,180:35-42. [37] MUGELE F, BARET J C, STEINHAUSER D. Microfluidic mixing through electrowetting-induced droplet oscillations[J]. Applied Physics Letters,2006,88(20):204106. [38] MIRAGHAIE R,STERLING J D,NADIM A.Shape oscillation and internal mixing in sessile liquid drops using electrowetting on dielectric (EWOD)[J].NSTI-Nanotech Conference & Trade Show, 2006,2:610-613. [39] SEN P,KIM C J.Capillary spreading dynamics of electrowetted sessile droplets in air[J]. Langmuir,2009,25(8):4302-4305. [40] KO SH, LEE H, KANG K H. Hydrodynamic flows in electrowetting[J].Langmuir,2008,24(3):1094-1101. [41] JUNG M O,SUNG H K,KWAN H K.Shape oscillation of a drop in AC electrowetting[J].Langmuir, 2008, 24(15):8379-8386. [42] MUGELE F,STAICU A,BAKKER R,et al.Capillary Stokes drift:a new driving mechanism for mixing in AC-electrowetting[J]. Lab on A Chip, 2011, 11(12):2011-2016. [43] 蒋冬冬,洪芳军,郑平.交流电润湿作用下液滴的振荡行为特性[J].上海交通大学学报,2013,47(4):513-518. [44] 黄翔峰,王旭慧,陆丽君,等.多尺度研究油水乳状液稳定性的技术进展[J].化工进展,2016,35(1):26-33. [45] 冯叔初,郭揆常.油气集输与矿场加工[M].东营:中国石油大学出版社,2006. [46] 陈庆国,梁雯,宋春辉.电场强度对原油乳化液破乳脱水的影响[J].高电压技术,2014,40(1):173-180. [47] 杨东海,何利民,叶团结,等.高压交流电场中单液滴变形度影响因素[J].化工学报,2011,62(5):1358-1364. [48] 顾国疆,刘阁,陈彬,等.W/O型油水乳化液物理破乳技术及装置研究进展[J].化工进展,2015,34(2):319-324. [49] EOW J S,GHADIRI M,SHARIF A.Experimental studies of deformation and break-up of aqueous drops in high electric fields[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2003,225(1):193-210. [50] KAMIYA D,HORIE M.Study of electrically-induced wetting on silicon single-crystal substrates[J].Contact Angle,Wettability and Adhesion,2006,4:281-294. [51] 张军,何宏舟.高压静电破乳中离散液滴的动力学分析[J].化工学报,2013,64(6):2050-2057. [52] 杨东海,何利民,叶团结,等.高压交流电场中单液滴振荡特性实验[J].石油学报(石油加工),2012,28(4):666-682. [53] 赵雪峰,何利民,叶团结,等.交流电场中水滴破裂及其影响因素研究[J].工程热物理学报,2013,34(10):1890-1893. [54] 危卫,张云伟,顾兆林.电场作用下电流变液滴的变形及力学行为[J].科学通报,2013,58(3):197-205. [55] 白莉,倪玲英,郭长会,等.乳状液液滴在高压直流电场中的变形与破裂分析[J].应用力学学报,2013,30(1):76-79. [56] 张军,何宏舟,黄冠星.均匀电场中液滴变形特性的耗散粒子动力学模拟[J].化工学报,2014,65(10):3872-3877. [57] 梁猛,李青,王奎升,等.匀强电场作用下分散相液滴的变形和破裂[J].化工学报,2014,65(3):843-848. [58] 陈庆国,宋春辉,梁雯,等.非均匀电场下乳化油中液滴变形动力学行为[J].化工学报,2015,66(3):955-964. [59] 孙治谦,金有海,王磊,等.高频脉冲电场参数对水滴极化变形的影响[J].化工学报,2012,63(10):3112-3118. |