[1] 刘洋,艾常春,胡意,等.碳包覆金属氧化物作为超级电容器电极材料的研究进展[J].化工进展,2013,32(8):1849-1854. [2] CHOI B G,YANG M H,HONG W H,et al.3D macroporous graphene frameworks for supercapacitors with high energy and power densities[J].ACS Nano,2012,6(5):4020-4028. [3] JIANG Y,LIN L.A two-stage,self-aligned vertical densification process for as-grown CNT forests in supercapacitor applications[J]. Sensors & Actuators A Physical,2012,188(12):261-267. [4] DONG Y,LIN H,ZHOU D,et al.Synthesis of mesoporous graphitic carbon fibers with high performance for supercapacitor[J].Electrochimica Acta,2015,159:116-123. [5] KESKINEN J,TUURALA S,SJÖDIN M,et al. Asymmetric and symmetric supercapacitors based on polypyrrole and activated carbon electrodes[J].Synthetic Metals,2015,203:192-199. [6] 冯辉霞,王滨,谭琳,等.导电聚合物基超级电容器电极材料研究进展[J].化工进展,2014,33(3):689-695. [7] ZHANG Y Q,LI L,SHI S J,et al.Synthesis of porous Co3O4 nanoflake array and its temperature behavior as pseudo-capacitor electrode[J].Journal of Power Sources,2015,60(3):1-6. [8] XIAO H,GUO W,SUN B,et al.Mesoporous TiO2 and Co-doped TiO2 nanotubes/reduced graphene oxide composites as electrodes for supercapacitors[J].Electrochimica Acta,2016,190:104-117. [9] 史雪,高婷婷,周国伟.过渡金属化合物多壳空心球的制备及其应用研究进展[J].化工进展,2015,34(11):3951-3958. [10] MA W,CHEN S,YANG S,et al.Hierarchical MnO2 nanowire/graphene hybrid fibers with excellent electrochemical performance for flexible solid-state supercapacitors[J].Journal of Power Sources,2016,306:481-488. [11] CHEN J,WANG Y,CAO J,et al.Flexible and solid-state asymmetric supercapacitor based on ternary graphene/MnO2/carbon black hybrid film with high power performance[J].Electrochimica Acta,2015,182:861-870. [12] LUAN Y,HUANG Y,WANG L,et al.Porous carbon@MnO2 and nitrogen-doped porous carbon from carbonized loofah sponge for asymmetric supercapacitor with high energy and power density[J].Journal of Electroanalytical Chemistry,2016,763:90-96. [13] PAN C,GU H,DONG L.Synthesis and electrochemical performance of polyaniline@MnO2/graphene ternary composites for electrochemical supercapacitors[J].Journal of Power Sources,2016,303:175-181. [14] XU G R,WEN Y,MIN X P,et al.Construction of MnO2/3-dimensional porous crack Ni for high-performance supercapacitors[J].Electrochimica Acta,2015,186:133-141. [15] XIONG C,LI T,DANG A,et al.Two-step approach of fabrication of three-dimensional MnO2-graphene-carbon nanotube hybrid as a binder-free supercapacitor electrode[J]. Journal of Power Sources,2016,306:602-610. [16] QIAO YQ,SUN QJ,XI JY,et al.A modified solvothermal synthesis of porous Mn3O4 for supercapacitor with excellent rate capability and long cycle life[J].Journal of Alloys & Compounds,2015,660:416-422. [17] YANG S,SONG X,ZHANG P,et al.Crumpled nitrogen-doped graphene-ultrafine Mn3O4 nanohybrids and their application in supercapacitors[J].J.Mater.Chem.A,2013,1(45):14162-14169. [18] JIN G,XIAO X,LI S,et al.Strongly coupled graphene/Mn3O4 composite with enhanced electrochemical performance for supercapacitor electrode[J].Electrochimica Acta,2015,178:689-698. [19] YANG X,HE Y,BAI Y,et al.Mn3O4 nanocrystalline/graphene hybrid electrode with high capacitance[J]. Electrochimica Acta,2015,188:398-405. [20] XIAO H,QU F,WU X.Ultrathin NiO nanoflakes electrode materials for supercapacitors[J].Applied Surface Science,2016,360:8-13. [21] SUN X,SI W,LIU X,et al.Multifunctional Ni/NiO hybrid nanomembranes as anode materials for high-rate Li-ion batteries[J].Nano Energy,2014,9:168-175. [22] ZENG Y,WANG L,WANG Z,et al.Facile synthesis of self-assembled porous NiO nanostructures and their application to supercapacitor electrodes[J].Materials Today Communications,2015,5:70-74. [23] XIAO H,QU F,WU X.Ultrathin NiO nanoflakes electrode materials for supercapacitors[J].Applied Surface Science,2016,360:8-13. [24] HUANG M L,GU C D,GE X,et al.NiO nanoflakes grown on porous graphene frameworks as advanced electrochemical pseudocapacitor materials[J].Journal of Power Sources,2014,259(7):98-105. [25] HAKAMADA M,ABE T,MABUCHI M.Electrodes from carbon nanotubes/NiO nanocomposites synthesized in modified Watts bath for supercapacitors[J].Journal of Power Sources,2016,325:670-674. [26] LIU A,CHE H,MAO Y,et al.Template-free synthesis of one-dimensional hierarchical NiO nanotubes self-assembled by nanosheets for high-performance supercapacitors[J]. Ceramics International,2016,42(9):11435-11441. [27] WANG X,CHEN X,GAO L,et al.One-dimensional arrays of Co3O4 nanoparticles:synthesis,characterization,and optical and electrochemical properties[J]. J. Phys.Chem.B,2004,108(42):16401-16404. [28] 范书琼,孔令斌,王儒涛,等.Co3O4的制备及电化学性能[J].化工进展,2013,32(s1):168-173. [29] LIU W,LI X,ZHU M,et al.High-performance all-solid state asymmetric supercapacitor based on Co3O4 nanowires and carbon aerogel[J].Journal of Power Sources,2015,282:179-186. [30] LIN H,HUANG Q,WANG J,et al.Self-assembled graphene/polyaniline/Co3O4 ternary hybrid aerogels for supercapacitors[J]. Electrochimica Acta,2016,191:444-451. [31] FAN H,QUAN L,YUAN M,et al.Thin Co3O4 nanosheet array on 3D porous graphene/nickel foam as a binder-free electrode for high-performance supercapacitors[J]. Electrochimica Acta,2015,188:222-229. [32] PAN X,CHEN X,LI Y,et al.Facile synthesis of Co3O4 nanosheets electrode with ultrahigh specific capacitance for electrochemical supercapacitors[J].Electrochimica Acta,2015,182:1101-1106. [33] QIU K,LU Y,CHENG J,et al.Ultrathin mesoporous Co3O4,nanosheets on Ni foam for high-performance supercapacitors[J].Electrochimica Acta,2014,157:62-68. [34] WANG X,XIA H,WANG X,et al.Facile synthesis ultrathin mesoporous Co3O4 nanosheets for high-energy asymmetric supercapacitor[J].Journal of Alloys & Compounds,2016,686:969-975. [35] CHEN J,XU J,ZHOU S,et al.Template-grown graphene/porous Fe2O3 nanocomposite:a high-performance anode material for pseudocapacitors[J].Nano Energy,2015,15:719-728. [36] QUAN H,CHENG B,XIAO Y,et al.One-pot synthesis of α-Fe2O3 nanoplates-reduced graphene oxide composites for supercapacitor application[J].Chemical Engineering Journal,2015,286:165-173. [37] LI X,ZHANG L,HE G..Fe3O4 doped double-shelled hollow carbon spheres with hierarchical pore network for durable high-performance supercapacitor[J].Carbon,2015,99:514-522. [38] SHINDE S K,DUBAL D P,GHODAKE G S,et al.Morphological tuning of CuO nanostructures by simple preparative parameters in SILAR method and their consequent effect on supercapacitors[J].Nano-Structures & Nano-Objects,2016,6:5-13. [39] ZHU S,WU M,GE M H,et al.Design and construction of three-dimensional CuO/polyaniline/rGO ternary hierarchical architectures for high performance supercapacitors[J]. Journal of Power Sources,2016,306:593-601. [40] SARAVANAKUMAR B,PURUSHOTHAMAN K K,MURALIDHARAN G.High performance supercapacitor based on carbon coated V2O5 nanorods[J].Journal of Electroanalytical Chemistry,2015,758:111-116. [41] HUANG X,ZHANG W,TAN Y,et al.Facile synthesis of rod-like Bi2O3 nanoparticles as an electrode material for pseudocapacitors[J].Ceramics International,2016,42(1):2099-2105. [42] VIJAYAKUMAR S,LEE S H,RYU K S.Hierarchical CuCo2O4 nanobelts as a supercapacitor electrode with high areal and specific capacitance[J].Electrochimica Acta,2015,182:979-986. [43] ZHANG B,LI W,SUN J,et al.NiO/MnO2 core/shell nanocomposites for high-performance pseudocapacitors[J]. Materials Letters,2014,114(1):40-43. [44] NGUYEN V H,TRAN V C,KHARISMADEWI D,et al. Ultralong MnO2 nanowires intercalated graphene/Co3O4 composites for asymmetric supercapacitors[J].Materials Letters,2015,147:123-127. [45] LIU T,CHAI H,JIA D,et al.Rapid microwave-assisted synthesis of mesoporous NiMoO4 nanorod/reduced graphene oxide composites for high-performance supercapacitors[J]. Electrochimica Acta,2015,180:998-1006. [46] SU L,WANG Y,SHA Y,et al.Ternary active site Co3O4/NiO/MnO2 electrode with enhanced capacitive performances[J].Journal of Alloys & Compounds,2016,656:585-589. [47] FAN D B,WANG H,ZHANG Y C,et al.Preparation of crystalline MnS thin films by chemical bath deposition[J]. Materials Chemistry and Physics,2003,80(1):44-47. [48] PUJARI R B,LOKHANDE A C,YADAV A A,et al. Synthesis of MnS microfibers for high performance flexible supercapacitors[J].Materials and Design,2016,108:510-517. [49] QUAN H,CHENG B,CHEN D,et al.One-pot synthesis of α-MnS/nitrogen-doped reduced graphene oxide hybrid for high-performance asymmetric supercapacitors[J]. Electrochimica Acta,2016,210:557-566. [50] LI X,SHEN J,LI N,et al.Fabrication of γ-MnS/rGO composite by facile one-pot solvothermal approach for supercapacitor applications[J].Journal of Power Sources,2015,282:194-201. [51] LI X,SHEN J,LI N,et al.Template-free solvothermal synthesis of NiS2 microspheres on graphene sheets for high-performance supercapacitors[J].Materials Letters,2015,139:81-85. [52] LIN H,LIU F,WANG X,et al.Graphene-coupled flower-like Ni3S2 for a free-standing 3D aerogel with an ultra-high electrochemical capacity[J].Electrochimica Acta,2016,191:705-715. [53] YU L,YANG B,LIU Q,et al.Interconnected NiS nanosheets supported by nickel foam:soaking fabrication and supercapacitors application[J].Journal of Electroanalytical Chemistry,2015,739(739):156-163. [54] PATIL A M,LOKHANDE A C,CHODANKAR N R,et al. Engineered morphologies of β-NiS thin films via anionic exchange process and their supercapacitive performance[J]. Materials & Design,2016,97:407-416. [55] YAN X,TONG X,MA L,et al.Synthesis of porous NiS nanoflake arrays by ion exchange reaction from NiO and their high performance supercapacitor properties[J].Materials Letters,2014,124(6):133-136. [56] TANG J,SHEN J,LI N,et al.A free template strategy for the synthesis of CoS2-reduced graphene oxide nanocomposite with enhanced electrode performance for supercapacitors[J].Ceramics International,2014,40(10):15411-15419. [57] LIN T W,DAI C S,TASI T T,et al.High-performance asymmetric supercapacitor based on Co9S8/3D graphene composite and graphene hydrogel[J].Chemical Engineering Journal,2015,279:241-249. [58] ZHANG Q,XU C,LU B.Super-long life supercapacitors based on the construction of Ni foam/graphene/Co3S4,composite film hybrid electrodes[J].Electrochimica Acta,2014,132(3):180-185. [59] XING J C,ZHU Y L,LI M Y,et al.Hierarchical mesoporous CoS2 microspheres:morphology-controlled synthesis and their superior pseudocapacitive properties[J]. Electrochimica Acta,2014,149:285-292. [60] YANG Z,CHEN C Y,LIU C W,et al.Quantum dot-sensitized solar cells featuring CuS/CoS electrodes provide 4.1% efficiency[J].Advanced Energy Materials,2011,1(2):259-264. [61] CHEN Y,DAVOISNE C,TARASCON J M,et al. Growth of single-crystal copper sulfide thin films via electrodeposition in ionic liquid media for lithium ion batteries[J].J.Mater.Chem.,2012,22(12):5295-5299. [62] HUANG K J,ZHANG J Z,KE X.One-step synthesis of layered CuS/multi-walled carbon nanotube nanocomposites for supercapacitor electrode material with ultrahigh specific capacitance[J].Electrochimica Acta,2014,149(149):28-33. [63] YAN T,LI R,ZAIJUN L.Facile construction of three-dimensional NiCo2S4 with tremella-like morphology for high performance supercapacitors[J].Materials Letters,2016,167:234-237. [64] ZHANG J,GAO H,ZHANG M Y,et al.NiCo2S4/Ni(OH)2 core-shell heterostructured nanotube arrays on carbon-fabric as high-performance pseudocapacitor electrodes[J].Applied Surface Science,2015,349:870-875. [65] VADIVEL S,NAVEEN A N,KAMALAKANNAN V P,et al.Facile large scale synthesis of Bi2S3 nano rods-graphene composite for photocatalytic photoelectrochemical and supercapacitor application[J].Applied Surface Science,2015,351(1):283-290. [66] PATIL S J,LOKHANDE A C,LOKHANDE C D.Effect of aqueous electrolyte on pseudocapacitive behavior of chemically synthesized La2S3 electrode[J].Materials Science in Semiconductor Processing,2016,41:132-136. [67] KONG D S,WANG J M,SHAO H B,et al. Electrochemical fabrication of a porous nanostructured nickel hydroxide film electrode with superior pseudocapacitive performance[J].Journal of Alloys & Compounds,2011,509(18):5611-5616. [68] WANG C,QU H,PENG T,et al.Large scale α-Co(OH)2 needle arrays grown on carbon nanotube foams as free standing electrodes for supercapacitors[J].Electrochimica Acta,2016,191:133-141. [69] FU W,GONG Y,WANG M,et al.β-Ni(OH)2 nanosheets grown on graphene as advanced electrochemical pseudocapacitor materials with improved rate capability and cycle performance[J]. Materials Letters,2014,134:107-110. [70] WU Q,WEN M,CHEN S,et al.Lamellar-crossing-structured Ni(OH)2/CNTs/Ni(OH)2,nanocomposite for electrochemical supercapacitor materials[J].Journal of Alloys & Compounds,2015,646:990-997. [71] YANG S,CHENG K,YE K,et al.A novel asymmetric supercapacitor with buds-like Co(OH)2 used as cathode materials and activated carbon as anode materials[J].Journal of Electroanalytical Chemistry,2015,741(5):93-99. [72] CHEN K,XUE D.Water-soluble inorganic salt with ultrahigh specific capacitance:Ce(NO3)3 can be designed as excellent pseudocapacitor electrode[J].Journal of Colloid & Interface Science,2014,416(3):172-176. [73] XU C,CHEN K,HAO W,et al.Functionality of Fe(NO3)3 salts as both positive and negative pseudocapacitor electrodes in alkaline aqueous electrolyte[J].Electrochimica Acta,2014,147:216-224. |